The Mechanisms of Reactions Influencing Atmospheric Ozone

Author(s):  
Jack G. Calvert ◽  
John J. Orlando ◽  
William R. Stockwell ◽  
Timothy J. Wallington

Ozone, an important trace component, is critical to life on Earth and to atmospheric chemistry. The presence of ozone profoundly impacts the physical structure of the atmosphere and meteorology. Ozone is also an important photolytic source for HO radicals, the driving force for most of the chemistry that occurs in the lower atmosphere, is essential to shielding biota, and is the only molecule in the atmosphere that provides protection from UV radiation in the 250-300 nm region. However, recent concerns regarding environmental issues have inspired a need for a greater understanding of ozone, and the effects that it has on the Earth's atmosphere. The Mechanisms of Reactions Influencing Atmospheric Ozone provides an overview of the chemical processes associated with the formation and loss of ozone in the atmosphere, meeting the need for a greater body of knowledge regarding atmospheric chemistry. Renowned atmospheric researcher Jack Calvert and his coauthors discuss the various chemical and physical properties of the earth's atmosphere, the ways in which ozone is formed and destroyed, and the mechanisms of various ozone chemical reactions in the different spheres of the atmosphere. The volume is rich with valuable knowledge and useful descriptions, and will appeal to environmental scientists and engineers alike. A thorough analysis of the processes related to tropospheric ozone, The Mechanisms of Reactions Influencing Atmospheric Ozone is an essential resource for those hoping to combat the continuing and future environmental problems, particularly issues that require a deeper understanding of atmospheric chemistry.

2018 ◽  
Vol 4 (2) ◽  
pp. 76-85
Author(s):  
Владимир Губенко ◽  
Vladimir Gubenko ◽  
Иван Кириллович ◽  
Ivan Kirillovich

Internal gravity waves (IGW) significantly affect the structure and circulation of Earth’s atmosphere by transporting wave energy and momentum upward from the lower atmosphere. Since IGW can propagate freely through a stably stratified atmosphere, similar effects may occur in the atmospheres of Mars and Venus. Observations of temperature and wind speed fluctuations induced by internal waves in Earth’s atmosphere have shown that wave amplitudes increase with height, but not quickly enough to correspond to the amplitude increase due to an exponential decrease in the density without energy dissipation. The linear theory of IGW explains the wave amplitude growth rate as follows: any wave amplitude exceeding the threshold value leads to instability and produces turbulence, which hinders further amplitude growth (internal wave saturation). The mechanisms that contribute most to the energy dissipation and saturation of IGW in the atmosphere are thought to be the dynamical (shear) and convective instabilities. The assumption of internal wave saturation plays a key role in radio occultation (RO) monitoring of IGW in planetary atmospheres. A radiosonde study of wave saturation processes in Earth’s atmosphere is therefore actual and important task. We report the results of determination of actual and threshold amplitudes, saturation degree, and other characteristics for the identified IGW in Earth’s atmosphere obtained from the analysis of SPARC (Stratospheric Processes And their Role in Climate) radiosonde measurements of wind speed and temperature [http://www.sparc.sunysb.edu/].


Author(s):  
Donald Eugene Canfield

This chapter deals with the “great oxidation event” (GOE), which represents a quantum shift in the oxygen content of the atmosphere. It suggests that the GOE represents the evolution of cyanobacteria. According to the geologic record, the oxygen content of Earth's atmosphere increased dramatically around 2.3 billion years ago. Since cyanobacteria likely evolved much earlier, it does not appear that a well-oxygenated atmosphere is a necessary or immediate consequence of the activities of oxygen-producing organisms. Atmospheric chemistry is a slave to the dynamics of the mantle, as the interior and exterior of the planet are connected in a profound way. Indeed, it took half of Earth's history for the mantle to quiet to point where oxygen could accumulate. This, however, represented a watershed, a tipping point if you will, where the chemistry of Earth's surface was forever altered.


2020 ◽  
Vol 82 (7) ◽  
pp. 470-476
Author(s):  
Rick Martin ◽  
Eun Ju Lim

Carbon dioxide (CO2) is a colorless, odorless gas that makes up a small fraction of Earth's atmosphere. Despite its inconspicuous nature, CO2 plays an integral part in sustaining life on Earth, a part that is largely unknown or underappreciated by the general public. We present a set of activities designed to help students overcome the most common misunderstandings about CO2, from its sheer existence as a mass-containing molecule to its complementary roles in photosynthesis and respiration. Through these activities, students will be able to apply their knowledge to real-world phenomena, including weight loss and global warming.


2011 ◽  
Vol 64 (1) ◽  
pp. 16 ◽  
Author(s):  
Eva-Maria Krammer ◽  
Sophie Bernad ◽  
G. Matthias Ullmann ◽  
Arthur Hickman ◽  
Pierre Sebban

The dating of the dawn of life on Earth is a difficult task, requiring an accumulation of evidences from many different research fields. Here we shall summarize findings from the molecular scale (proteins) to cells and photosynthesis-related-fossils (stromatolites from the early and the late Archaean Eon), which indicate that life emerged on Earth 4.2–3.8 Ga (i.e. 4.2–3.8 × 109 years) ago. Among the data supporting this age, the isotopic and palaeontological fingerprints of photosynthesis provide some of the strongest evidence. The reason for this is that photosynthesis, carried out in particular by cyanobacteria, was responsible for massive changes to the Earth’s environment, i.e. the oxygenation of the Earth’s atmosphere and seawater, and the fixation of carbon from atmospheric CO2 in organic material. The possibility of a very early (>3.8 Ga ago) appearance of complex autotrophic organisms, such as cyanobacteria, is a major change in our view of life’s origins.


2011 ◽  
Vol 64 (2) ◽  
pp. 228 ◽  
Author(s):  
Eva-Maria Krammer ◽  
Sophie Bernad ◽  
G. Matthias Ullmann ◽  
Arthur Hickman ◽  
Pierre Sebban

The dating of the dawn of life on Earth is a difficult task, requiring an accumulation of evidences from many different research fields. Here we shall summarize findings from the molecular scale (proteins) to cells and photosynthesis-related-fossils (stromatolites from the early and the late Archaean Eon), which indicate that life emerged on Earth 4.2–3.8 Ga (i.e. 4.2–3.8 × 109 years) ago. Among the data supporting this age, the isotopic and palaeontological fingerprints of photosynthesis provide some of the strongest evidence. The reason for this is that photosynthesis, carried out in particular by cyanobacteria, was responsible for massive changes to the Earth's environment, i.e. the oxygenation of the Earth's atmosphere and seawater, and the fixation of carbon from atmospheric CO2 in organic material. The possibility of a very early (>3.8 Ga ago) appearance of complex autotrophic organisms, such as cyanobacteria, is a major change in our view of life's origins.


Eos ◽  
2021 ◽  
Vol 102 ◽  
Author(s):  
Sarah Stanley

When tiny particles enter Earth’s atmosphere, a newly described series of chemical reactions may lead to production of phosphorus-containing molecules that are essential for biological processes.


Author(s):  
Paul I. Palmer

‘What is special about Earth’s atmosphere?’ describes the several interconnected layers that make up Earth’s atmosphere before considering the atmospheres of other planets. Each layer has different characteristics determined by the density of air and their relative proximity to Earth’s surface and outer space. The lower atmosphere consists of the troposphere, which extends from the surface to the tropopause at 10–15 km. The middle atmosphere is comprised of the stratosphere, extending to the stratopause at 50 km, and the mesosphere that stretches to the mesopause at 100 km. Above this is the upper atmosphere divided into the thermosphere, which takes us to 500–1,000 km, and the exosphere, which extends to the near vacuum of outer space.


Author(s):  
Yuk L. Yung ◽  
William B. DeMore

It is usual in the study of planets to consider the Earth first, and then the other planets, so that we can better understand how and why the rest of the solar system is different from us. In this book the order of study will be reversed: we shall first try to understand the solar system, and then we will ask why Earth is unique. We adopt this unconventional approach for two reasons. First, Earth's atmosphere today is the end-point of an evolution that started about 4.6 billion years ago. The pristine materials have all been drastically altered. However, by examining other parts of the solar system that have evolved to a lesser degree, we may deduce what the early Earth might have been like. Second, Earth's atmosphere today is largely determined by the complex biosphere, whose evolution has been intimately coupled to that of the atmosphere. In other words, ours is the only atmosphere in the solar system that supports life, and it is in turn modified by life. Therefore, to appreciate the beauty and the intricacy of our planet, we must start with simpler objects without life. Chemical composition is intimately connected to evolution, which in turn is driven by chemical change. In this book we attempt to provide a coherent basis for understanding the planetary atmospheres, to identify the principal chemical cycles that control their present composition and past history. Figure 1.1 gives an illustration of the intellectual framework in which our field of study is embedded. The unifying theme that connects the planets in the solar system is "origin"; that is, all planets share a common origin about 4.6 billion years ago. The subsequent divergence in the solar system may be partly attributed to evolution, driven primarily by solar radiation. The bulk of solar radiation consists of photons in the visible spectrum with a mean blackbody radiation temperature of 5800 K. The part that is responsible for direct atmospheric chemistry is a tiny portion (less than 1% of the total flux) in the ultraviolet. In addition, the sun emits a steady stream of corpuscular particles, known as the solar wind. While the sun provides the principal source of energy for change, the time rate of change is crucial, and that is where chemical kinetics and chemical cycles play pivotal roles.


Sign in / Sign up

Export Citation Format

Share Document