Restless motion

2021 ◽  
pp. 30-39
Author(s):  
Adrian P Sutton

Atoms in solids are in constant random motion. Their kinetic energy is heat. Heat associated with local regions may fluctuate. The size of the fluctuations increases with decreasing size of the region. Such fluctuations enable thermally activated processes to occur. At equilibrium interstitials and vacancies undergo random walks in solids, which gives rise to diffusion in crystals and reptation in polymers. The activation energy is the free energy barrier these defects have to overcome to jump between sites. Diffusion is biased by driving forces resulting from gradients of chemical potential. The mobility relates the drift velocity of defects to the driving force on them. The Einstein relation relates the mobility to the diffusivity. It is an example of the fluctuation-dissipation theorem. Atomic motion enables diffusion and limits mobility. Thermal expansion is also a consequence of atomic motion, resulting from a fundamental asymmetry in all interatomic forces.

1993 ◽  
Vol 311 ◽  
Author(s):  
K. Barmak ◽  
K.K. Coffey

ABSTRACTIn order to arrive at a model for nucleation in the reaction of polycrystalline thin films, we have made use of a transport model that combines atom transport across interface reaction barriers with transport along grain boundaries. Through this transport model, the boundary chemical potential, μIi, and a characteristic length Li for each specie are defined. Li and the ratio of grain size to Li determine the spatial variation and the time evolution of the boundary chemical potential respectively. Nucleation of the product phase is modeled as a process whose driving force is determined by these position dependent (and time dependent) boundary chemical potentials. Thus thin film reactions become similar to precipitation from bulk homogeneous supersaturated solid solutions. Numerical calculations, however, show that boundary diffusion results in low “effective” driving forces for nucleation which can lead to heterogeneous nucleation of even the first phase. The model provides a new approach to phase selection by re-evaluation of the driving force and considers the effect of product and reactant grain structure to be fundamental to the reaction process.


Author(s):  
Xiandong Zhou ◽  
Christoph Reimuth ◽  
Peter Stein ◽  
Bai-Xiang Xu

AbstractThis work presents a regularized eigenstrain formulation around the slip plane of dislocations and the resultant non-singular solutions for various dislocation configurations. Moreover, we derive the generalized Eshelby stress tensor of the configurational force theory in the context of the proposed dislocation model. Based on the non-singular finite element solutions and the generalized configurational force formulation, we calculate the driving force on dislocations of various configurations, including single edge/screw dislocation, dislocation loop, interaction between a vacancy dislocation loop and an edge dislocation, as well as a dislocation cluster. The non-singular solutions and the driving force results are well benchmarked for different cases. The proposed formulation and the numerical scheme can be applied to any general dislocation configuration with complex geometry and loading conditions.


2018 ◽  
Vol 22 (3) ◽  
pp. 194-211 ◽  
Author(s):  
Yongqi Feng ◽  
Tianshu Zhang

Purpose The purpose of this paper is to provide a better understanding of the driving forces and structural changes of China as a market provider for Korea. This paper gives the answers for the following questions: How do China’s final demands trigger the growth of its imports from Korea? And what’s the impact of China’s final demands on the import in different industries? Design/methodology/approach Based on the Multi-Regional Input-Output model and World Input-Output Table database, this paper constructs the non-competitive imports input-output (IO) table of China to Korea. According to this table, we can calculate the induced imports coefficient and comprehensive induced import coefficients of China’s four final demands for imports from Korea in the 56 industries in China. Findings Among the four driving forces, the strongest one is changes in inventories and valuables. The impact of final consumption expenditure and fixed capital formation is much lower than that of changes in inventories and valuables, but they have a broader impact for the 56 industries. This paper finds out the China’s import induction of the final demands to Korea peaked in 2005 and 2010 and decreased greatly in 2014, so the position of China as market provider for Korea will no longer rise substantially, contrarily it will be in a steady state. Originality/value First, this paper constructs the non-competitive IO table to analyze the market provider issues between two countries and provides practical ways and methods for studies on the issues of imports and market provider. Second, this paper investigates the different roles of four final demands on driving force of China as market provider for Korea and the structural changes of China as a market provider for Korea among 56 industries from 2000 to 2014.


2013 ◽  
Vol 427-429 ◽  
pp. 133-136
Author(s):  
Qiang Song ◽  
Pu Zeng

The driving theory and the dynamic characteristics of small radius steering, medium radius steering and big radius steering is analyzed, and the simulation model is established under Matlab/Simulink. Then the track bulldozers steering performance of the three sheerings is simulated. The results show that, at different steering modes, the running states of the two sides driving motors are not the same, and the track driving forces of the two sides vary widely. The track driving force is great in the small radius steering model, while small in the medium and big radius steering models. The simulation results lay the foundation for dual-motor drive track bulldozers steering performance matching.


2002 ◽  
Vol 12 (9) ◽  
pp. 77-78
Author(s):  
S. N. Artemenko

Spectral density of fluctuations of the CDW phase are calculated taking into account electric field induced by phase fluctuations. The approach based upon the fluctuation-dissipation theorem (FDT) combined with equations of linear response of the CDW conductor is used. Fluctuating electric field is found to suppress fluctuations of the phase, while fluctuations of the electric potential are sizeable. This suggests that transition from the CDW to the normal state (which is usually observed well below the mean-field transition temperature) may he provoked by fluctuations of the chemical potential, rather than by destruction of the CDW coherence between conducting chains due to phase fluctuations.


2018 ◽  
Vol 138 (5) ◽  
pp. 2989-2998 ◽  
Author(s):  
Nina Obradović ◽  
Vladimir Blagojević ◽  
Suzana Filipović ◽  
Nataša Đorđević ◽  
Darko Kosanović ◽  
...  

Author(s):  
Yu. A. Taran ◽  
A. V. Kozlov ◽  
A. L. Taran

The aim of the work is to consider the mechanism of clogging the pores of the filter unit by small particles from the flow of filtrate inside them. Theoretical ideas about the process of filtering with the deposition of small particles from the filtrate on the pore walls and attribution of its fundamentals to restructuring from the original structure to the final structure allow to describe the process of clogging the pores using well studied concepts of known processes with phase transformations (in particular, crystallization). Based on this analogy and the approach to the description of the transformation of the "old" structure into a "new" one in time, using experimental data and their processing we calculated the rate of nucleation of the sediment centers (ωnucl), the linear (υlin) and volumetric rates of sediment plaques growth in the pores of the filter unit at different values of the process driving force, at different pressure difference in the system, and at different concentrations of solid particles in the suspension. Interpolation and extrapolation dependences were obtained for analyzing the mechanisms of sediments formation and growth for determining and calculating these (ωnucl, υlin) rates. Using the concepts of nonequilibrium thermodynamics to assess the influence of the driving forces we studied their influence (changes in the concentration of solid particles in the filtrate suspension and pressure drop across the filtering layer) on the dynamics of the filtration process. Using the data obtained it is possible to find the degree of clogging of through pores, which determines the filtration conditions, the filter septum type, and the filter overall dimensions.


Author(s):  
Yan Li ◽  
Shuchao Zhang ◽  
Ning Mei

In this paper, the anti-gravity flow in the spiral micro-channel on the surface of horizontal tube was visualized by the three-dimensional ultra-microscope system. The coupling relationship between the driving force and the flow was studied by Onsager reciprocal relations. The results show that the formation of the anti-gravity flow in the spiral micro-channel on the surface of horizontal tube is impacted by the combining effect of several factors, such as the capillary pressure, wettability, temperature, and bubbles.


2002 ◽  
Vol 751 ◽  
Author(s):  
Roope K. Astala ◽  
Paul D. Bristowe

ABSTRACTThe segregation of Nasr impurities to a Σ = 5 [001] twist boundary in SrTiO3 is studied using DFT-based plane-wave pseudopotential techniques. The formation energies of the impurities are calculated as a function of oxygen chemical potential and electron chemical potential. The results indicate a strong driving force for segregation to the boundary and that the Na impurities exhibit acceptor-like behaviour. The atomic displacements caused by the impurities are small both in the bulk and at the grain boundary. Based on the results a model is suggested in which Nasr segregation is driven by soft relaxation of the electronic structure.


Sign in / Sign up

Export Citation Format

Share Document