Pharmacokinetics of Drug Distribution

Author(s):  
W. Mark Saltzman

Pharmacology, the study of agents and their actions, can be divided into two branches. Pharmacodynamics is concerned with the effects of a drug on the body and, therefore, encompasses dose–response relationships as well as the molecular mechanisms of drug activity. Pharmacokinetics, on the other hand, is concerned with the effect of the body on the drug. Drug metabolism, transport, absorption, and elimination are components of pharmacokinetic analysis. Physiology influences the distribution of drugs within the body; overall distribution depends on rates of drug uptake, rates of distribution between tissue compartments, and rates of drug elimination or biotransformation. Each of these phenomena potentially involves aspects of drug diffusion, permeation through membranes, and fluid movement that were introduced in the previous sections. The goal of pharmacokinetics is synthesis of these isolated basic mechanisms into a functional unit; this goal is most often achieved by development of a mathematical model that incorporates descriptions of the uptake, distribution, and elimination of a drug in humans or animals. This model can then be used to predict the outcome of different dosage regimens on the time course of drug concentrations in tissues. The development of a complete pharmacokinetic model for any given drug is a substantial undertaking, since the fate of any compound introduced into a whole organism is influenced by a variety of factors, and is usually complicated—in ways that are difficult to predict—by the presence of disease. In this section, pharamacokinetics will be introduced by first considering the simplest situation: an agent is introduced into a single body compartment from which it is also eliminated. While quite sophisticated compartmental models can be developed from this basic construct, it is frequently difficult to relate model parameters (such as the volume of specific compartments or the rate of transfer between compartments) to physiological or anatomical parameters. To avoid this difficulty, physiological pharmacokinetic models are frequently employed; in these models, the kinetics of drug uptake, distribution, and elimination from local tissue sites are predicted by constructing anatomically and biochemically accurate models of the tissue environment.

2017 ◽  
Vol 20 (2) ◽  
pp. 261-268
Author(s):  
A. Burmańczuk ◽  
T. Grabowski ◽  
T. Błądek ◽  
C. Kowalski ◽  
P. Dębiak

Abstract The aim of the study was to carry out retrospective and prospective comparative analyses of the pharmacokinetics of CEF after single intramammary (IMM) administration in cows. The prospective study (study A) was conducted on 9 dairy cows of the Polish Black-White race with clinical mastitis during the lactation period. Milk samples were collected at 2, 4, 6, 8, 10, 24, 36, 48, 72 and 84 h after single IMM administration of 250 mg of CEF to one quarter. Drug concentrations in milk samples were determined by HPLC-MS/MS technique and the results of the pharmacokinetic analysis were compared to those obtained in previous studies based on the microbiological (study B) and HPLC-UV methods (study C and D). Pharmacokinetic parameters were calculated based on adapted two-compartment model of drug distribution. One of the findings of the comparison of the analysed investigations is that the CEF kinetics determined with the microbiological method is consistent with the results obtained by the authors of this paper. Both studies yielded similar results of the key pharmacokinetic parameters related to the level of the drug distribution to tissues and elimination half-life. In the pharmacodynamic analysis, the observations in all four studies were entirely consistent and have shown lower values of T>MIC90 in healthy animals and significantly higher values in infected dairy cows. The comparison of studies A, B, C, and D revealed that the time of complete CEF wash-out of 90.90% varied and amounted to 5.7, 8.0, 2.2, and 2.2 days after administration of the drug, respectively. It was confirmed that not only the type of the analytical method but also correct sampling have a significant impact on determination of the correct value of the drug half-life after IMM administration. The comparative analysis of studies in which the milk yield was high and low allows a conclusion that this parameter in the case of CEF has no significant effect on T>MIC90.


2016 ◽  
Vol 60 (10) ◽  
pp. 5885-5893 ◽  
Author(s):  
Pierre Moine ◽  
Scott W. Mueller ◽  
Jonathan A. Schoen ◽  
Kevin B. Rothchild ◽  
Douglas N. Fish

ABSTRACTThe objective of this study was to determine the pharmacokinetics and pharmacodynamics (PK/PD) of a weight-based cefoxitin dosing regimen for surgical prophylaxis in obese patients. Patients received a single dose of cefoxitin at 40 mg/kg based on total body weight. Cefoxitin samples were obtained over 3 h from serum and adipose tissue, and concentrations were determined by validated high-performance liquid chromatography. Noncompartmental pharmacokinetic analysis was performed, followed by Monte Carlo simulations to estimate probability of target attainment (PTA) forStaphylococcus aureus,Escherichia coli, andBacteroides fragilisover 4-h periods postdose. Thirty patients undergoing bariatric procedures were enrolled. The body mass index (mean ± standard deviation [SD])was 45.9 ± 8.0 kg/m2(range, 35.0 to 76.7 kg/m2); the median cefoxitin dose was 5 g (range, 4.0 to 7.5 g). The mean maximum concentrations were 216.15 ± 41.80 μg/ml in serum and 12.62 ± 5.89 in tissue; the mean tissue/serum ratio was 8% ± 3%. In serum, weight-based regimens achieved ≥90% PTA (goal time during which free [unbound] drug concentrations exceed pathogen MICs [fT>MIC] of 100%) forE. coliandS. aureusover 2 h and forB. fragilisover 1 h; in tissue this regimen failed to achieve goal PTA at any time point. The 40-mg/kg regimens achieved higher PTAs over longer periods in both serum and tissue than did the standard 2-g doses. However, although weight-based cefoxitin regimens were better than fixed doses, achievement of desired pharmacodynamic targets was suboptimal in both serum and tissue. Alternative dosing regimens and agents should be explored in order to achieve more favorable antibiotic performance during surgical prophylaxis in obese patients.


2021 ◽  
Vol 18 (6) ◽  
pp. 8641-8660
Author(s):  
Nilay Mondal ◽  
◽  
Koyel Chakravarty ◽  
D. C. Dalal ◽  

<abstract><p>In order to overcome the obstruction of cell membranes in the path of drug delivery to diseased cells, the applications of electric pulses of adequate potency are designated as electroporation. In the present study, a mathematical model of drug delivery into the electroporated tissue is advocated, which deals with both reversibly and irreversibly electroporated cells. This mathematical formulation is manifested through a set of differential equations, which are solved analytically, and numerically, according to the complexity, with a pertinent set of initial and boundary conditions. The time-dependent mass transfer coefficient in terms of pores is used to find the drug concentrations through reversibly and irreversibly electroporated cells as well as extracellular space. The effects of permeability of drug, electric field and pulse period on drug concentrations in extracellular and intracellular regions are discussed. The threshold value of an electric field ($ E &gt; 100 $ V cm$ ^{-1} $) to initiate drug uptake is identified in this study. Special emphasis is also put on two cases of electroporation, drug dynamics during ongoing electroporation and drug dynamics after the electric pulse period is over. Furthermore, all the simulated results and graphical portrayals are discussed in detail to have a transparent vision in comprehending the underlying physical and physiological phenomena. This model could be useful to various clinical experiments for drug delivery in the targeted tissue by controlling the model parameters depending on the tissue condition.</p></abstract>


2015 ◽  
Vol 60 (2) ◽  
pp. 1029-1034 ◽  
Author(s):  
Pooja Manchandani ◽  
Jian Zhou ◽  
Kimberly R. Ledesma ◽  
Luan D. Truong ◽  
Diana S.-L. Chow ◽  
...  

ABSTRACTDespite dose-limiting nephrotoxicity concerns, polymyxin B has resurged as the treatment of last resort for multidrug-resistant Gram-negative bacterial infections. However, the pharmacokinetic, pharmacodynamic, and nephrotoxic properties of polymyxin B still are not thoroughly understood. The objective of this study was to provide additional insights into the overall biodistribution and disposition of polymyxin B in an animal model. Sprague-Dawley rats were dosed with intravenous polymyxin B (3 mg/kg of body weight). Drug concentrations in the serum, urine, bile, and tissue (brain, heart, lungs, liver, spleen, kidneys, and skeletal muscle) samples over time were assayed by a validated methodology. Among all the organs evaluated, polymyxin B distribution was highest in the kidneys. The mean renal tissue/serum polymyxin B concentration ratios were 7.45 (95% confidence interval [CI], 4.63 to 10.27) at 3 h and 19.62 (95% CI, 5.02 to 34.22) at 6 h postdose. Intrarenal drug distribution was examined by immunostaining. Using a ratiometric analysis, proximal tubular cells showed the highest accumulation of polymyxin B (Mander's overlap coefficient, 0.998) among all cell types evaluated. Less than 5% of the administered dose was recovered in urine over 48 h, but all 4 major polymyxin B components were detected in the bile over 4 h. These findings corroborate previous results that polymyxin B is highly accumulated in the kidneys, but the elimination likely is via a nonrenal route. Biliary excretion could be one of the routes of polymyxin B elimination, and this should be further explored. The elucidation of mechanism(s) of drug uptake in proximal tubular cells is ongoing.


2019 ◽  
Vol 133 (10) ◽  
pp. 862-866
Author(s):  
J Siu ◽  
M D Tingle ◽  
R G Douglas

AbstractBackgroundThe evidence supporting the efficacy of antibiotic therapy in the treatment of chronic rhinosinusitis is not compelling. A limited number of studies show that the changes in the nasal microbiome in patients following drug therapy are unpredictable and variable. The evidence for the impact of oral antibiotics on the gut microbiota is stronger, possibly as a result of differences in drug distribution to various sites around the body. There are few studies on sinus mucosal and mucus levels of oral antibiotics used in the treatment of chronic rhinosinusitis. The distribution dependent effects of antibiotics on the sinonasal microbiome is unclear.ConclusionThis review highlights that relative drug concentrations and their efficacy on microbiota at different sites is an important subject for future studies investigating chronic rhinosinusitis.


1996 ◽  
Vol 317 (3) ◽  
pp. 681-687 ◽  
Author(s):  
Luigi PUGLIELLI ◽  
Attilio RIGOTTI ◽  
Ludwig AMIGO ◽  
Liliana NUÑEZ ◽  
Aldo V. GRECO ◽  
...  

Biliary cholesterol represents one of the two major excretory pathways for sterol elimination from the body and plays a central role in cholesterol gallstone formation. Biliary cholesterol originates from a precursor pool of preformed and newly synthesized free cholesterol. Although it has been suggested that newly synthesized and preformed biliary cholesterol are secreted by independent pathways, the specific cellular and molecular mechanisms are unknown. We used male Wistar rats to study the time-course of the appearance of newly synthesized cholesterol, phosphatidylcholine and protein into bile. The specific role of sterol carrier protein-2 (SCP-2) in the transport of newly synthesized biliary cholesterol was evaluated by an in vivo antisense oligonucleotide approach. In contrast to [14C]phosphatidylcholine and [35S]proteins, the time-course of [14C]cholesterol appearance into bile was rapid, and microtubule- and Golgi-independent. In vivo SCP-2 antisense treatment reduced and delayed the appearance of biliary [14C]cholesterol. Furthermore, hepatic SCP-2 expression increased more than 3-fold over control values in rats that had been treated with diosgenin to increase biliary secretion of newly synthesized cholesterol. These results suggest that SCP-2 is necessary for the rapid transport of newly synthesized cholesterol into bile and that hepatocytes can induce SCP-2 expression according to the rate of biliary secretion of newly synthesized cholesterol.


2001 ◽  
Vol 40 (01) ◽  
pp. 31-37 ◽  
Author(s):  
U. Wellner ◽  
E. Voth ◽  
H. Schicha ◽  
K. Weber

Summary Aim: The influence of physiological and pharmacological amounts of iodine on the uptake of radioiodine in the thyroid was examined in a 4-compartment model. This model allows equations to be derived describing the distribution of tracer iodine as a function of time. The aim of the study was to compare the predictions of the model with experimental data. Methods: Five euthyroid persons received stable iodine (200 μg, 10 mg). 1-123-uptake into the thyroid was measured with the Nal (Tl)-detector of a body counter under physiological conditions and after application of each dose of additional iodine. Actual measurements and predicted values were compared, taking into account the individual iodine supply as estimated from the thyroid uptake under physiological conditions and data from the literature. Results: Thyroid iodine uptake decreased from 80% under physiological conditions to 50% in individuals with very low iodine supply (15 μg/d) (n = 2). The uptake calculated from the model was 36%. Iodine uptake into the thyroid did not decrease in individuals with typical iodine supply, i.e. for Cologne 65-85 μg/d (n = 3). After application of 10 mg of stable iodine, uptake into the thyroid decreased in all individuals to about 5%, in accordance with the model calculations. Conclusion: Comparison of theoretical predictions with the measured values demonstrated that the model tested is well suited for describing the time course of iodine distribution and uptake within the body. It can now be used to study aspects of iodine metabolism relevant to the pharmacological administration of iodine which cannot be investigated experimentally in humans for ethical and technical reasons.


2019 ◽  
Vol 25 (5) ◽  
pp. 496-504 ◽  
Author(s):  
Naïm Bouazza ◽  
Frantz Foissac ◽  
Déborah Hirt ◽  
Saïk Urien ◽  
Sihem Benaboud ◽  
...  

Background: Drug prescriptions are usual during pregnancy, however, women and their fetuses still remain an orphan population with regard to drugs efficacy and safety. Most xenobiotics diffuse through the placenta and some of them can alter fetus development resulting in structural abnormalities, growth or functional deficiencies. Methods: To summarize the different methodologies developed towards the prediction of fetal drug exposure. Results: Neonatal cord blood concentration is the most specific measurement of the transplacental drug transfer at the end of pregnancy. Using the cord blood and mother drug concentrations altogether, drug exchanges between the mother and fetus can be modeled and quantified via a population pharmacokinetic analysis. Thereafter, it is possible to estimate the fetus exposure and the fetus-to-mother exposure ratio. However, the prediction of placental transfer before any administration to pregnant women is desirable. Animal studies remain difficult to interpret due to structural and functional inter-species placenta differences. The ex-vivo perfusion of the human placental cotyledon is the method of reference to study the human placental transfer of drugs because it is thought to mimic the functional placental tissue. However, extrapolation of data to in vivo situation remains difficult. Some research groups have extensively worked on physiologically based models (PBPK) to predict fetal drug exposure and showed very encouraging results. Conclusion: PBPK models appeared to be a very promising tool in order to predict fetal drug exposure in-silico. However, these models mainly picture the end of pregnancy and knowledge regarding both, development of the placental permeability and transporters is strongly needed.


Author(s):  
Robert Laumbach ◽  
Michael Gochfeld

This chapter describes the basic principles of toxicology and their application to occupational and environmental health. Topics covered include pathways that toxic substances may take from sources in the environment to molecular targets in the cells of the body where toxic effects occur. These pathways include routes of exposure, absorption into the body, distribution to organs and tissues, metabolism, storage, and excretion. The various types of toxicological endpoints are discussed, along with the concepts of dose-response relationships, threshold doses, and the basis of interindividual differences and interspecies differences in response to exposure to toxic substances. The diversity of cellular and molecular mechanisms of toxicity, including enzyme induction and inhibition, oxidative stress, mutagenesis, carcinogenesis, and teratogenesis, are discussed and the chapter concludes with examples of practical applications in clinical evaluation and in toxicity testing.


Proceedings ◽  
2020 ◽  
Vol 78 (1) ◽  
pp. 11
Author(s):  
Alexander Parra-Coca ◽  
Antonio Boix-Montañés ◽  
Ana C. Calpena ◽  
Helena Colom

Osteoarthritis is frequently treated in veterinary settings with non-steroidal anti-inflammatory drugs (NSAID) such as carprofen (CP). Its action over the articular cartilage can be enhanced by increasing drug uptake into the cartilage, alongside its site of action, and anticipating its rapid distribution towards the bloodstream. A pharmacokinetic study to evaluate carprofen nanoparticles (NP) after intraarticular administration (IA) in rabbits was performed through a modeling allometric approach. The pharmacokinetic analysis of plasma profiles showed a rapid CP distribution outwards the synovial chamber but mainly remaining in plasma (Vc = 0.14 L/5 Kg), according to its high protein-binding. The absorption data modeling showed the occurrence of two different release–absorption rate processes after nanoparticle administration in the synovial space, i.e., a fast rate process causing a burst effect and involving the 59.5% of the total CP absorbed amount and a slow rate process, involving 40.5%. Interestingly, the CP burst effect inside the joint space enhances its diffusion towards cartilage resulting in CP accumulation in about three times higher concentrations than in plasma. In line with these results, the normalized-by-dose area under the concentration vs. time curve (AUC) values after IA were 80% lower than those observed after the intravenous. Moreover, the slower slope of the concentration–time terminal phase after IA administration vs. intravenous (IV) suggested a flip-flop phenomenon (0.35 h-1 vs. 0.19 h-1). Notably, CP clearances are predictive of the pharmacokinetic (PK) profile of CP in healthy humans (0.14 L/h/5 kg vs. 2.92 L/h/70 kg) although an over-estimation has been detected for cats or dogs (10 times and 4 times, respectively). This fact could probably be attributed to inter-species metabolic differences. In summary, despite the limited number of animals used, this study shows that the rabbit model could be suitable for a predictive evaluation of the release enhancement of CP-NP towards the biophase in arthritic diseases not due to sterical retention of the formulation.


Sign in / Sign up

Export Citation Format

Share Document