Fundamental Equations

Author(s):  
Nhan Phan-Thien ◽  
Sangtae Kim

There is a need for theoretical and computational tools that provide macroscopic relations for a composite continuum, starting from a description of the composite microstructure. The outlook for this viewpoint is particularly bright, given current trends in high-performance parallel supercomputing. This book is a step along those directions, with a special emphasis on a collection of mathematical methods that together build a base for advanced computational models. Consider the important example of the effective bulk properties of fiberreinforced materials consisting of fibers of minute cross section imbedded in a soft elastic epoxy. The physical properties of such materials is determined by the microstructure parameters: volume fraction occupied by the fibers versus continuous matrix; fiber orientations; shape of the fiber cross sections; and the spatial distribution of fibers. Hashin notes that “While for conventional engineering materials, such as metals and plastics, physical properties are almost exclusively determined by experiment, such an approach is impractical for FRM (fiber-reinforced materials) because of their great structural and physical variety,” The analysis of warpage and shrinkage of reinforced thermoset plastic parts provides yet another example of the important role played by computational models. The inevitable deformation of the fabricated part is influenced by the interplay between constituent material properties, the composite microstructure and macroscopic shape of the component. Computational models play an important role in controlling these deformations to minimize undesired directions that lead to warpage and shrinkage. The strength, stiffness, and low weight of these materials all result from the combination of a dispersed inclusion of very high modulus imbedded in a relatively soft and workable elastic matrix. It thus appears reasonable, as a first approximation, to consider a theory for the distribution of rigid (infinite modulus) inclusions in an elastic matrix, reserving the bulk of our efforts for the study of the role of inclusion microstructure. A framework for computational modeling has been established for materials processing, using models of microstructure with simplified rules for the motion of the inclusions.

2008 ◽  
Vol 86 (6) ◽  
pp. 484-494 ◽  
Author(s):  
Alain Dufresne

There are numerous examples of animals or plants that synthesize extracellular high-performance skeletal biocomposites consisting of a matrix reinforced by nano sized crystalline domains. Cellulose and chitin are classical examples of these reinforcing elements, which occur as whisker-like microfibrils that are biosynthesized and deposited in a continuous fashion. In many cases, this mode of biogenesis leads to crystalline microfibrils that are almost defect-free, and whose axial physical properties therefore approach those of perfect crystals. During the last decade we have attempted to mimic biocomposites by blending cellulose or chitin whiskers from different sources with polymer matrices. Aqueous suspensions of such nano crystals can be prepared by acid hydrolysis of the substrate. The object of this treatment is to dissolve away regions of low lateral order so that the water-insoluble, highly crystalline residue may be converted into a stable suspensoid by subsequent vigorous mechanical shearing action. The resulting nano crystals occur as rod-like particles or whiskers, whose dimensions depend on the nature of the substrate. They are typically a few hundred nm long and between 5 and 20 nm in diameter. Starch can also be used as a source for the production of nano crystals. The constitutive nano crystals appear as platelet-like nano particles with a length ranging between 20 and 40 nm, a width ranging between 15 and 30 nm, and a thickness ranging between 5 and 7 nm. Since the first announcement of using cellulose whiskers as a reinforcing phase, they have been used extensively as model fillers in several kinds of polymeric matrices, including synthetic and natural ones. Casting mixtures of polysaccharide nano crystals and lattices led to the production of nano composite materials with drastically enhanced mechanical properties, especially at T > Tg of the matrix, by virtue of the formation of a whiskers network, even when the whisker volume fraction was only a few percent. The formation of this rigid network, resulting from strong interactions between whiskers, was assumed to be governed by a percolation mechanism. This hydrogen-bonded network induced a thermal stabilization of the composite up to 500 K, the temperature at which polysaccharides start to decompose. Any factors that perturb the formation of this percolating network directly affect the reinforcing effect of polysaccharide nano crystals. In addition to some practical applications, the study of these nano composite materials can help researchers understand such physical properties as the geometric and mechanical percolation effect.Key words: nano composites, polysaccharide, polymer, cellulose, nano crystal.


2019 ◽  
Vol 26 (3) ◽  
pp. 90-103
Author(s):  
Flaviano Williams Fernandes

For decades, computational simulation models have been used by scientists in search for new materials with technological applications in several areas of knowledge. For this, software based on several theoretical-computational models were developed in order to obtain an analysis of the physical properties at atomic levels. The objective of this work is proposing a widely functional software to analyze the physical properties of nanostructures based on carbon and condensed systems using theories of low computational cost. Therefore, a Fortran language computational program called HICOLM was developed, whose theoretical bases are based on two commonly known models (Tight-binding and Molecular Dynamics). The physical properties of condensed systems can be obtained in the thermodynamic equilibrium in several statistical ensembles, and possible to obtain an analysis of the properties of the material and its evolution in the time-dependent on its thermodynamic conditions like temperature and pressure. Moreover, from the tight-binding model, the HICOLM program is also capable of performing a physical analysis of carbon-based nanostructures from the calculation of the material band structure.


Author(s):  
Auclair Gilles ◽  
Benoit Danièle

During these last 10 years, high performance correction procedures have been developed for classical EPMA, and it is nowadays possible to obtain accurate quantitative analysis even for soft X-ray radiations. It is also possible to perform EPMA by adapting this accurate quantitative procedures to unusual applications such as the measurement of the segregation on wide areas in as-cast and sheet steel products.The main objection for analysis of segregation in steel by means of a line-scan mode is that it requires a very heavy sampling plan to make sure that the most significant points are analyzed. Moreover only local chemical information is obtained whereas mechanical properties are also dependant on the volume fraction and the spatial distribution of highly segregated zones. For these reasons we have chosen to systematically acquire X-ray calibrated mappings which give pictures similar to optical micrographs. Although mapping requires lengthy acquisition time there is a corresponding increase in the information given by image anlysis.


Alloy Digest ◽  
1973 ◽  
Vol 22 (9) ◽  

Abstract BERYLCO 25 is the standard high-performance beryllium copper alloy most widely used because of its high strength, hardness and excellent spring characteristics. BERYLCO 25 is the updated version of BERYLCO 25S (Alloy Digest Cu-3, November 1952). This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties. It also includes information on corrosion resistance as well as forming, heat treating, machining, and joining. Filing Code: Cu-271. Producer or source: Kawecki Berylco Industries Inc..


Alloy Digest ◽  
2005 ◽  
Vol 54 (3) ◽  

Abstract MoldStar 90 is a high-performance beryllium-free copper alloy for the blow-molding and injection-molding industries. This datasheet provides information on composition, physical properties, hardness, tensile properties, and compressive strength. It also includes information on machining, joining, and surface treatment. Filing Code: CU-732. Producer or source: Performance Alloys.


Alloy Digest ◽  
2005 ◽  
Vol 54 (2) ◽  

Abstract MoldStar 150 (formerly PAS 940) is a high performance copper alloy for the blow-molding and injection-molding industries. This datasheet provides information on composition, physical properties, tensile properties, and compressive strength. It also includes information on forming, machining, joining, and surface treatment. Filing Code: CU-729. Producer or source: Performance Alloys.


Alloy Digest ◽  
2020 ◽  
Vol 69 (7) ◽  

Abstract Alcoa 351 SupraCast is a heat-treatable aluminum-silicon-copper alloy that also contains small amounts of magnesium, manganese, vanadium, and zirconium. It is designed for components exposed to elevated temperatures in high performance engines. This datasheet provides information on composition, physical properties, and tensile properties as well as fatigue. It also includes information on heat treating, machining, and joining. Filing Code: Al-466. Producer or source: Alcoa Corporation.


Alloy Digest ◽  
2018 ◽  
Vol 67 (6) ◽  

Abstract Alloy CuSn6 (UNS C51900) is a high-performance copper alloy. Typical uses include components for the electronics industry such as connector springs, relays, leaf springs, and switches as well as machine parts. This datasheet provides information on composition, physical properties, hardness, tensile properties, and bend strength. It also includes information on corrosion resistance as well as forming and joining. Filing Code: Cu-873. Producer or source: Gebr. Kemper GmbH + Company KG Metallwerke.


Alloy Digest ◽  
1999 ◽  
Vol 48 (1) ◽  

Abstract Olin C197 is a second-generation high performance alloy developed by Olin Brass. It has a strength and bend formability similar to C194 (see Alloy Digest Cu-360, September 1978), but with 25% higher electrical and thermal conductivity. High conductivity allows C197 to replace brasses and bronzes in applications where high current-carrying capability is required. Also, the strength of C197 provides higher contact forces when substituted for many lower strength coppers. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties. It also includes information on corrosion and wear resistance as well as forming and joining. Filing Code: CU-627. Producer or source: Olin Brass.


Alloy Digest ◽  
2009 ◽  
Vol 58 (8) ◽  

Abstract Alcan 2027 is an Al-Cu-Mg-Mn-Zr alloy, developed to provide higher strength and damage tolerance than the incumbent 2024 alloy. Alcan 2027 T3511 possesses good damage tolerance. This datasheet covers Alcan 2027 T3511 in both thin and the heavier cross sections. This datasheet provides information on composition, physical properties, and tensile properties as well as fatigue. It also includes information on corrosion resistance as well as forming and heat treating. Filing Code: AL-424. Producer or source: Alcan Inc.


Sign in / Sign up

Export Citation Format

Share Document