Good Old-Fashioned AI and Genetic Algorithms: An Exercise in Translation Scholarship

Author(s):  
Herbert A. Simon

In both the GA and GOFAI traditions, invention or design tasks are viewed as instances of problem solving. To invent or design is to describe an object that performs, in a range of environments, some desired function or serves some intended purpose; the process of arriving at the description is a problem-solving process. In problem solving, the desired object is characterized in two different ways. The problem statement or goal statement characterizes it as an object that satisfies certain criteria of structure and/or performance. The problem solution describes in concrete terms an object that satisfies these criteria. The problem statement specifies what needs to be done; the problem solution describes how to do it [9]. This distinction between the desired object and the achieved object, between problem statement and problem solution, is absolutely fundamental to the idea of solving a problem, for it resolves the paradox of Plato's Meno: How do we recognize the solution of a problem unless we already knew it in advance? The simple answer to Plato is that, although the problem statement does not define a solution, it contains the criteria for recognizing a solution, if and when found. Knowing and being able to apply the recognition test is not equivalent to knowing the solution. Being able to determine, for any given electrical circuit, whether it would operate, to a sufficiently good approximation, as a low-pass filter does not imply that one knows a design for a circuit that meets this condition. In asserting that we do not know the solution in advance, we must be careful to state accurately what the problem is. In theorem proving, for example, we may know, to the last detail, the expression we are trying to prove; what we do not know is what proof (what sequence of expressions, each following inferentially from the set of its predecessors) will terminate in the specified one. Wiles knew well the mathematical expression that is Fermat's last theorem; he spent seven years or more finding its proof. In the domain of theorem proving, the proof is the problem solution and the recognition criteria are the tests that determine whether each step in the proof follows from its predecessors and whether the proof terminates in the desired theorem.

Author(s):  
Pritesh Kumar Yadav ◽  
Ankita Verma ◽  
Prasanna Kumar Misra

Deep submicron CMOS technology proves to be suitable for transceiver design at mmwave band frequencies. At the same time, it has been a challenging task to obtain high performance at mmwave frequencies. In this paper, a 28[Formula: see text]GHz low-IF receiver frontend with improved performance by incorporating a proposed linear Gm-C low-pass filter (LPF) is presented using 40[Formula: see text]nm CMOS technology targeting for 5G wireless system. A mathematical expression for the linearity of the proposed filter is derived and compared with the basic filter model. The improved linearity (IIP3 of [Formula: see text][Formula: see text]dBm) of the proposed filter results in the enhancement of linearity and hence the Figure of Merit (FOM) of the receiver with the proposed filter. The receiver attains a conversion gain of 34.6[Formula: see text]dB, a noise figure of 3.1[Formula: see text]dB and IIP3 of [Formula: see text][Formula: see text]dBm. The total current drawn by the receiver is 27.3[Formula: see text]mA at a 1.2[Formula: see text]V power supply. The overall FOM of the receiver with the proposed filter is improved to 0.30 whereas the FOM of the receiver with the basic filter model is 0.13. The area of the receiver is [Formula: see text] whereas the proposed filter occupies [Formula: see text].


2017 ◽  
Vol E100.C (10) ◽  
pp. 858-865 ◽  
Author(s):  
Yohei MORISHITA ◽  
Koichi MIZUNO ◽  
Junji SATO ◽  
Koji TAKINAMI ◽  
Kazuaki TAKAHASHI

2016 ◽  
Vol 15 (12) ◽  
pp. 2579-2586
Author(s):  
Adina Racasan ◽  
Calin Munteanu ◽  
Vasile Topa ◽  
Claudia Pacurar ◽  
Claudia Hebedean

Author(s):  
Nanan Chomnak ◽  
Siradanai Srisamranrungrueang ◽  
Natapong Wongprommoon
Keyword(s):  

Sensors ◽  
2021 ◽  
Vol 21 (13) ◽  
pp. 4305
Author(s):  
Takamasa Terada ◽  
Masahiro Toyoura ◽  
Takahide Sato ◽  
Xiaoyang Mao

In this work, we propose a fabric electrode with a special structure that can play the role of a noise reduction filter. Fabric electrodes made of the conductive fabric have been used for long-term ECG measurements because of their flexibility and non-invasiveness; however, due to the large impedance between the skin and the fabric electrodes, noise is easily introduced into the ECG signal. In contrast to conventional work, in which chip-type passive elements are glued to the electrode to reduce noise, the proposed electrode can obtain a noise-reduced ECG by changing the structure of fabric. Specifically, the proposed electrode was folded multiple times to form a capacitor with a capacitance of about 3 nF. It is combined with the skin-electrode impedance to form a low-pass filter. In the experiment, we made a prototype of the electrodes and measured ECG at rest and during EMG-induced exercise. As a result, the SNR values at rest and during exercise were improved about 12.02 and 10.29 , respectively, compared with the fabric electrode without special structure. In conclusion, we have shown that changing the fabric electrode structure effectively removes noise in ECG measurement.


Sign in / Sign up

Export Citation Format

Share Document