High altitude waters in the face of climate change

Author(s):  
Dean Jacobsen ◽  
Olivier Dangles

Chapter 8 focuses on the effects of warming and changes in precipitation patterns on aquatic life at high altitude. Located near the edge of their climatic limits, in regions where the rate of warming is generally amplified compared with lowlands, high altitude aquatic systems present a high sensitivity to climate change. Changes in mountain climate create a number of indirect effects on aquatic life through the control of hydrological systems and processes, particularly those associated with the cryosphere (e.g. permafrost and ice melting) and the soil–vegetation interface (e.g. treeline expansion). The chapter then presents the three basic options faced by all aquatic organisms as their environmental conditions alter as a result of climate change: adapt, migrate, or perish. At an ecosystem level, small changes in physical, chemical, or biological characteristics can be amplified into major shifts in limnological properties.

Author(s):  
Dean Jacobsen ◽  
Olivier Dangles

Chapter 9 reviews the threats imposed by human activities to aquatic life at high altitude. High altitude regions of the inter-tropical belt are generally much more densely populated than their temperate counterparts. Therefore, they are directly affected by a number of human-related disturbances such as land use changes, water contamination, use and diversion, and the introduction of invasive species. The chapter details several unique environmental conditions of high altitude environments that make their aquatic biota particularly at risk in the face of anthropogenic disturbances. Among others, glaciers concentrate pollutants, low oxygen concentrations affect the response of aquatic fauna to stress, ultraviolet B modifies the bioavailability of contaminants, high primary productivity of grasslands encourages cattle ranching and fuels fires over large scales, and isolated watersheds favour species extinction following biological invasions.


Nature ◽  
2020 ◽  
Vol 580 (7804) ◽  
pp. 456-456 ◽  
Author(s):  
Judy Lawrence ◽  
Marjolijn Haasnoot ◽  
Robert Lempert

2017 ◽  
Author(s):  
Robert E. Keane ◽  
Lisa M. Holsinger ◽  
Mary F. Mahalovich ◽  
Diana F. Tomback

2017 ◽  
Vol 7 (1) ◽  
pp. 6-18 ◽  
Author(s):  
Alejandro Yáñez-Arancibia ◽  
John W. Day

The arid border region that encompasses the American Southwest and the Mexican northwest is an area where the nexus of water scarcity and climate change in the face of growing human demands for water, emerging energy scarcity, and economic change comes into sharp focus.


2020 ◽  
Vol 2 (8) ◽  
pp. 101-110
Author(s):  
N. N. ILYSHEVA ◽  
◽  
E. V. KARANINA ◽  
G. P. LEDKOV ◽  
E. V. BALDESKU ◽  
...  

The article deals with the problem of achieving sustainable development. The purpose of this study is to reveal the relationship between the components of sustainable development, taking into account the involvement of indigenous peoples in nature conservation. Climate change makes achieving sustainable development more difficult. Indigenous peoples are the first to feel the effects of climate change and play an important role in the environmental monitoring of their places of residence. The natural environment is the basis of life for indigenous peoples, and biological resources are the main source of food security. In the future, the importance of bioresources will increase, which is why economic development cannot be considered independently. It is assumed that the components of resilience are interrelated and influence each other. To identify this relationship, a model for the correlation of sustainable development components was developed. The model is based on the methods of correlation analysis and allows to determine the tightness of the relationship between economic development and its ecological footprint in the face of climate change. The correlation model was tested on the statistical materials of state reports on the environmental situation in the Khanty-Mansiysk Autonomous Okrug – Yugra. The approbation revealed a strong positive relationship between two components of sustainable development of the region: economy and ecology.


2015 ◽  
Vol 2015 (2) ◽  
pp. 1-10
Author(s):  
Christopher Crockett ◽  
Paul Kohl ◽  
Julia Rockwell ◽  
Teresa DiGenova
Keyword(s):  

Author(s):  
Dean Jacobsen ◽  
Olivier Dangles

Chapter 5 is focused on how organisms cope with the environmental conditions that are a direct result of high altitude. Organisms reveal a number of fascinating ways of dealing with a life at high altitude; for example, avoidance and pigmentation as protection against damaging high levels of ultraviolet radiation, accumulation of antifreeze proteins, and metabolic cold adaptation among species encountering low temperatures with the risk of freezing, oxy-regulatory capacity in animals due to low availability of oxygen, and root uptake from the sediment of inorganic carbon by plants living in waters poor in dissolved carbon dioxide. These and more adaptations are carefully described through a number of examples from famous flagship species in addition to the less well-known ones. Harsh environmental conditions work as an environmental filter that only allows the well-adapted species to slip through to colonize high altitude waters.


This is the first book to treat the major examples of megadrought and societal collapse, from the late Pleistocene end of hunter–gatherer culture and origins of cultivation to the 15th century AD fall of the Khmer Empire capital at Angkor, and ranging from the Near East to South America. Previous enquiries have stressed the possible multiple and internal causes of collapse, such overpopulation, overexploitation of resources, warfare, and poor leadership and decision-making. In contrast, Megadrought and Collapse presents case studies of nine major episodes of societal collapse in which megadrought was the major and independent cause of societal collapse. In each case the most recent paleoclimatic evidence for megadroughts, multiple decades to multiple centuries in duration, is presented alongside the archaeological records for synchronous societal collapse. The megadrought data are derived from paleoclimate proxy sources (lake, marine, and glacial cores; speleothems, or cave stalagmites; and tree-rings) and are explained by researchers directly engaged in their analysis. Researchers directly responsible for them discuss the relevant current archaeological records. Two arguments are developed through these case studies. The first is that societal collapse in different time periods and regions and at levels of social complexity ranging from simple foragers to complex empires would not have occurred without megadrought. The second is that similar responses to megadrought extend across these historical episodes: societal collapse in the face of insurmountable climate change, abandonment of settlements and regions, and habitat tracking to sustainable agricultural landscapes. As we confront megadrought today, and in the likely future, Megadrought and Collapse brings together the latest contributions to our understanding of past societal responses to the crisis on an equally global and diverse scale.


Sign in / Sign up

Export Citation Format

Share Document