The Hydrogen Atom and Positronium

Author(s):  
Michael E. Peskin

This chapter discusses the physics of the hydrogen atom and the electron-positron bound state positronium. It describes the energy levels of these atoms, including the fine structure and hyperfine structure. It discusses the lifetimes of the two species of positronium.

One of the earliest successes of classical quantum dynamics in a field where ordinary methods had proved inadequate was the solution, by Schwarzschild and Epstein, of the problem of the hydrogen atom in an electric field. It was shown by them that under the influence of the electric field each of the energy levels in which the unperturbed atom can exist on Bohr’s original theory breaks up into a number of equidistant levels whose separation is proportional to the strength of the field. Consequently, each of the Balmer lines splits into a number of components with separations which are integral multiples of the smallest separation. The substitution of the dynamics of special relativity for classical dynamics in the problem of the unperturbed hydrogen atom led Sommerfeld to his well-known theory of the fine-structure of the levels; thus, in the absence of external fields, the state n = 1 ( n = 2 in the old notation) is found to consist of two levels very close together, and n = 2 of three, so that the line H α of the Balmer series, which arises from a transition between these states, has six fine-structure components, of which three, however, are found to have zero intensity. The theory of the Stark effect given by Schwarzschild and Epstein is adequate provided that the electric separation is so much larger than the fine-structure separation of the unperturbed levels that the latter may be regarded as single; but in weak fields, when this is no longer so, a supplementary investigation becomes necessary. This was carried out by Kramers, who showed, on the basis of Sommerfeld’s original fine-structure theory, that the first effect of a weak electric field is to split each fine-structure level into several, the separation being in all cases proportional to the square of the field so long as this is small. When the field is so large that the fine-structure is negligible in comparison with the electric separation, the latter becomes proportional to the first power of the field, in agreement with Schwarzschild and Epstein. The behaviour of a line arising from a transition between two quantum states will be similar; each of the fine-structure components will first be split into several, with a separation proportional to the square of the field; as the field increases the separations increase, and the components begin to perturb each other in a way which leads ultimately to the ordinary Stark effect.


2019 ◽  
Vol 222 ◽  
pp. 03009
Author(s):  
A.V. Eskin ◽  
V.I. Korobov ◽  
A.P. Martynenko ◽  
V.V. Sorokin

The energy spectrum of bound states and hyperfine structure of muonic helium is calculated on the basis of stochastic variational method. The basis wave functions of muonic helium are taken in the Gaussian form. The matrix elements of the Hamiltonian are calculated analytically. For numerical calculation a computer code is written in the MATLAB system. As a result, numerical values of bound state energies and hyperfine structure are obtained. We calculate also correction to the structure of the nucleus, vacuum polarization and relativistic correction.


2012 ◽  
Vol 27 (19) ◽  
pp. 1250100 ◽  
Author(s):  
LAMINE KHODJA ◽  
SLIMANE ZAIM

Using the approach of the modified Euler–Lagrange field equation together with the corresponding Seiberg–Witten maps of the dynamical fields, a noncommutative Dirac equation with a Coulomb potential is derived. We then find the noncommutative modification to the energy levels and the possible new transitions. In the nonrelativistic limit a general form of the Hamiltonian of the hydrogen atom is obtained, and we show that the noncommutativity plays the role of spin and magnetic field which gives the hyperfine structure.


1988 ◽  
Vol 66 (7) ◽  
pp. 583-585
Author(s):  
Emilio San-Fabian ◽  
Serafin Fraga

Hyperfine-structure splittings have been evaluated for the SL ground states of some chosen atoms (11B, 11C, 13C, 14N, 17O, 19F, and 27Al) using a program developed at this laboratory. The program predicts the energy levels of many-electron atoms within the framework of a configuration-interaction treatment, using a Hamiltonian operator that includes the electrostatic interaction, the specific-mass correction, the SL nonsplitting terms, the fine-structure couplings, and the hyperfine-structure interactions. The agreement with experimental data is satisfactory.


The system of bands in the visible region of the emission spectrum of magnesium hydride is now well known. The bands with heads at λλ 5622, 5211, 4845 were first measured by Prof. A. Fowler, who arranged many of the strongest lines in empirical series for identification with absorption lines in the spectra of sun-spots. Later, Heurlinger rearranged these series in the now familiar form of P, Q and R branches, and considered them, with the OH group, as typical of doublet systems in his classification of the fine structure of bands. More recently, W. W. Watson and P. Rudnick have remeasured these bands, using the second order of a 21-foot concave grating, and have carried out a further investigation of the fine structure in the light of the present theory of band spectra. Their detection of an isotope effect of the right order of magnitude, considered with the general structure of the system, and the experimental work on the production of the spectrum, seems conclusive in assigning these bands to the diatomic molecule MgH. The ultra-violet spectrum of magnesium hydride is not so well known. The band at λ 2430 and the series of double lines in the region λ 2940 to λ 3100, which were recorded by Prof. Fowler in 1909 as accompanying the group of bands in the visible region, appear to have undergone no further investigation. In view of the important part played by hydride band spectra in the correlation of molecular and atomic electronic energy levels, it was thought that a study of these features might prove of interest in yielding further information on the energy states of the MgH molecule. The present paper deals with observations on the band at λ 2430; details of an investigation of the other features of the ultra-violet spectrum will be given in a later communication.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
E. V. Kirichenko ◽  
V. A. Stephanovich

AbstractWe study the joint effect of disorder and Coulomb interaction screening on the exciton spectra in two-dimensional (2D) structures. These can be van der Waals structures or heterostructures of organic (polymeric) semiconductors as well as inorganic substances like transition metal dichalcogenides. We consider 2D screened hydrogenic problem with Rytova–Keldysh interaction by means of so-called fractional Scrödinger equation. Our main finding is that above synergy between screening and disorder either destroys the exciton (strong screening) or promote the creation of a bound state, leading to its collapse in the extreme case. Our second finding is energy levels crossing, i.e. the degeneracy (with respect to index $$\mu $$ μ ) of the exciton eigenenergies at certain discrete value of screening radius. Latter effects may also be related to the quantum manifestations of chaotic exciton behavior in above 2D semiconductor structures. Hence, they should be considered in device applications, where the interplay between dielectric screening and disorder is important.


2015 ◽  
Vol 1085 ◽  
pp. 84-90
Author(s):  
Anna P. Zykova ◽  
Irina Kurzina ◽  
Mihail Yu. Novomejsky ◽  
Yuriy D. Novomejsky

The interaction of components in modifying mixtures with the elements of Fe-Mn-С alloys hyperfine structure is investigated. Comprehensive study of the modified material microstructure is conducted. The substructure of Fe-Mn-С alloys is shown to undergo significant changes. The produced castings are characterized with enhanced physical-and-chemical and technological properties


Sign in / Sign up

Export Citation Format

Share Document