Changes in migration, carry-over effects, and migratory connectivity

Author(s):  
Roberto Ambrosini ◽  
Andrea Romano ◽  
Nicola Saino

Studies of the timing (phenology) of bird migration provided some of the first evidence for the effects of climate change on organisms. Since the rate of climate change is uneven across the globe, with northern latitudes experiencing faster warming trends than tropical areas, animals moving across latitudes are subject to diverging trends of climate change at different stages of their annual life cycle, and, consequently, they can become mistimed with the local ecological conditions, with potentially negative effects on population size. This chapter reviews the modifications induced by climate change in different migration traits, like the timing of migration events, the distribution of organisms, and the direction and the speed of movements. It also considers the effects of ecological carry-over effects and migratory connectivity on the response of birds to climate change.

2020 ◽  
Vol 13 (4) ◽  
pp. 595-605
Author(s):  
Bram Van Moorter ◽  
Steinar Engen ◽  
John M. Fryxell ◽  
Manuela Panzacchi ◽  
Erlend B. Nilsen ◽  
...  

AbstractMany animal populations providing ecosystem services, including harvest, live in seasonal environments and migrate between seasonally distinct ranges. Unfortunately, two major sources of human-induced global change threaten these populations: climate change and anthropogenic barriers. Anthropogenic infrastructure developments present a global threat to animal migrations through increased migration mortality or behavioral avoidance. Climate change alters the seasonal and spatial dynamics of resources and therefore the effects of migration on population performance. We formulated a population model with ideal-free migration to investigate changes in population size and harvest yield due to barriers and seasonal dynamics. The model predicted an increasing proportion of migrants when the difference between areas in seasonality or carrying capacity increased. Both migration cost and behavioral avoidance of barriers substantially reduced population size and harvest yields. Not surprisingly, the negative effects of barriers were largest when the population benefited most from migration. Despite the overall decline in harvest yield from a migratory population due to barriers, barriers could result in locally increased yield from the resident population following reduced competition from migrants. Our approach and results enhance the understanding of how global warming and infrastructure development worldwide may change population dynamics and harvest offtake affecting livelihoods and rural economies.


2015 ◽  
Vol 282 (1818) ◽  
pp. 20151561 ◽  
Author(s):  
James W. Pearce-Higgins ◽  
Nancy Ockendon ◽  
David J. Baker ◽  
Jamie Carr ◽  
Elizabeth C. White ◽  
...  

Despite increasing concerns about the vulnerability of species' populations to climate change, there has been little overall synthesis of how individual population responses to variation in climate differ between taxa, with trophic level or geographically. To address this, we extracted data from 132 long-term (greater than or equal to 20 years) studies of population responses to temperature and precipitation covering 236 animal and plant species across terrestrial and freshwater habitats. Our results identify likely geographical differences in the effects of climate change on populations and communities in line with macroecological theory. Temperature tended to have a greater overall impact on populations than precipitation, although the effects of increased precipitation varied strongly with latitude, being most positive at low latitudes. Population responses to increased temperature were generally positive, but did not vary significantly with latitude. Studies reporting significant climatic trends through time tended to show more negative effects of temperature and more positive effects of precipitation upon populations than other studies, indicating climate change has already impacted many populations. Most studies of climate change impacts on biodiversity have focused on temperature and are from middle to high northern latitudes. Our results suggest their findings may be less applicable to low latitudes.


2020 ◽  
Vol 64 (1) ◽  
pp. 27-31
Author(s):  
Ľ. Korytár ◽  
M. Prokeš ◽  
A. Ondrejková ◽  
S. Zemanová

AbstractAmong emerging infectious diseases, 75 % are zoonotic. Migratory birds are important to public health because they carry emerging zoonotic pathogens or infected arthropod vectors. Disease is an important factor in the evolution of avian migrations and patterns of migratory connectivity. Research suggests that pathogen densities and diseases may influence the evolution of migratory behaviour. During the annual life cycle, European migratory birds spend: 2—4 months at the breeding locality, approximately 6 months on the wintering grounds, and several months (3 and more) on migration routes. There are many factors which determine when and where an outbreak of a disease may occur. Therefore, a complete understanding of the avian migratory systems has a high priority in the prevention of future outbreaks.


Author(s):  
Eric Yetter ◽  
Sophan Chhin ◽  
John Brown

We conducted dendroclimatic analyses and constructed future growth projections for red spruce (Picea rubens Sarg.) throughout the central Appalachians in the state of West Virginia. This study involved field sampling of 18 sites across red spruce’s range throughout Monongahela National Forest in 6 regions based on pairwise combinations of three latitudinal groups (north, central, and southern latitudes) with two aspects (north and south aspect). Each combination of latitudinal group and aspect was referred to as a landscape cluster. Growth was negatively impacted by high summer temperature stress, but responded favorably to high fall temperatures. The results also suggested that red spruce was likely impacted by the degree of winter harshness in all landscape clusters. In the northern latitudinal landscape clusters, red spruce responded favorably to warm spring temperatures by allowing an early start to the growing season. Growth projections under a future climate change scenario show that future expected increases in mean and maximum monthly temperatures will have negative effects on future spruce growth. The forecasting results suggested that red spruce in northern latitudes on south aspects or central latitudes on north aspects are the landscape clusters that will likely be the most resilient to future climate change. Dendroclimatic results and future growth projections can assist with identifying locations that are most suitable for future red spruce restoration activities.


2020 ◽  
pp. 161-165
Author(s):  
Bertram de Crom ◽  
Jasper Scholten ◽  
Janjoris van Diepen

To get more insight in the environmental performance of the Suiker Unie beet sugar, Blonk Consultants performed a comparative Life Cycle Assessment (LCA) study on beet sugar, cane sugar and glucose syrup. The system boundaries of the sugar life cycle are set from cradle to regional storage at the Dutch market. For this study 8 different scenarios were evaluated. The first scenario is the actual sugar production at Suiker Unie. Scenario 2 until 7 are different cane sugar scenarios (different countries of origin, surplus electricity production and pre-harvest burning of leaves are considered). Scenario 8 concerns the glucose syrup scenario. An important factor in the environmental impact of 1kg of sugar is the sugar yield per ha. Total sugar yield per ha differs from 9t/ha sugar for sugarcane to 15t/ha sugar for sugar beet (in 2017). Main conclusion is that the production of beet sugar at Suiker Unie has in general a lower impact on climate change, fine particulate matter, land use and water consumption, compared to cane sugar production (in Brazil and India) and glucose syrup. The impact of cane sugar production on climate change and water consumption is highly dependent on the country of origin, especially when land use change is taken into account. The environmental impact of sugar production is highly dependent on the co-production of bioenergy, both for beet and cane sugar.


2016 ◽  
Vol 6 (2) ◽  
pp. 1 ◽  
Author(s):  
Ross Gittell ◽  
Josh Stillwagon

<p>This paper explores the influence of US state-level policies meant to address climate change on clean technology industry development. The largest influence of climate change policies is identified as being on energy research employment. Only some policies seem to contribute positively to clean tech employment while other policies appear to discourage employment growth. The magnitudes of the short term effects, even when statistically significant, are modest. Negative impacts on employment are identified for several mandate-oriented, so called command and control, policies including vehicle greenhouse gas standards, energy efficiency resource standards, and renewable portfolio standards with the former two having increasing negative effects over time. The findings suggest that climate change policy advocates should be careful to not assume that there will be positive clean tech employment benefits from state-level energy and environmental policies. Instead, the benefits from these policies may derive primarily from other considerations beyond the scope of this paper, including health and environmental benefits and reduction of dependence on foreign energy sources.</p>


Author(s):  
M. von der Thannen ◽  
S. Hoerbinger ◽  
C. Muellebner ◽  
H. Biber ◽  
H. P. Rauch

AbstractRecently, applications of soil and water bioengineering constructions using living plants and supplementary materials have become increasingly popular. Besides technical effects, soil and water bioengineering has the advantage of additionally taking into consideration ecological values and the values of landscape aesthetics. When implementing soil and water bioengineering structures, suitable plants must be selected, and the structures must be given a dimension taking into account potential impact loads. A consideration of energy flows and the potential negative impact of construction in terms of energy and greenhouse gas balance has been neglected until now. The current study closes this gap of knowledge by introducing a method for detecting the possible negative effects of installing soil and water bioengineering measures. For this purpose, an environmental life cycle assessment model has been applied. The impact categories global warming potential and cumulative energy demand are used in this paper to describe the type of impacts which a bioengineering construction site causes. Additionally, the water bioengineering measure is contrasted with a conventional civil engineering structure. The results determine that the bioengineering alternative performs slightly better, in terms of energy demand and global warming potential, than the conventional measure. The most relevant factor is shown to be the impact of the running machines at the water bioengineering construction site. Finally, an integral ecological assessment model for applications of soil and water bioengineering structures should point out the potential negative effects caused during installation and, furthermore, integrate the assessment of potential positive effects due to the development of living plants in the use stage of the structures.


Author(s):  
Daniel Felipe Rodriguez-Vallejo ◽  
Antonio Valente ◽  
Gonzalo Guillén-Gosálbez ◽  
Benoit Chachuat

Reducing the contribution of the transport sector to climate change calls for a transition towards renewable fuels. Polyoxymethylene dimethyl ethers (OMEn) constitute a promising alternative to fossil-based diesel. This article...


Author(s):  
A. Marcos ◽  
D. Trigo ◽  
A.B. Muñiz-González ◽  
N. Tilikj ◽  
J.L. Martínez-Guitarte ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document