Surgical Diathermy

Author(s):  
Patrick Magee ◽  
Mark Tooley

As discussed in Chapter 4, when a voltage is applied across a conductor, a current will flow. If the voltage is applied across the body via suitable electrodes the body becomes part of the circuit and a current will also flow, the magnitude depending on the properties of the tissues in its path, particularly the resistance. This current can cause heating or other physiological effects, depending on the frequency of the driving voltage. The effects of the domestic mains current flowing through the body was discussed in Chapter 6, but different effects occur as the frequency of the voltage is increased. As the frequency goes up, the heating increases but the tissue stimulation decreases and, at frequencies above 100 kHz (i.e. radio frequencies), the effect is entirely heating. This heating effect in the body by electric current is called diathermy, but the location, concentration and how this heat is used is dependant on the electrode design and the current concentration or current density at any point in the circuit. For a certain applied voltage, the average current throughout the circuit will be the same. The current density is the current per unit area, and so if the material in which the current passes is smaller, the heating effect increases. The resistance of the material is proportional to its size, so as the material becomes smaller then its resistance gets larger. The heating power is the product of the current squared and the resistance (power = I2 × R). Surgical diathermy (or electrosurgery) is where either one or both of the electrodes are very small, and it is used to cut and coagulate tissue. The smaller electrode can be made into a pointed surgical tool and localised heating will occur at the tip of the instrument. The smaller and more pointed the instrument is, the greater the current density will be at the tip. This electrode is classified as the active or live one. The current densities around this electrode can be as much as 10 A cm−2, and the total heating power typically around 200 W.

Author(s):  
I-Fei Tsu ◽  
D.L. Kaiser ◽  
S.E. Babcock

A current theme in the study of the critical current density behavior of YBa2Cu3O7-δ (YBCO) grain boundaries is that their electromagnetic properties are heterogeneous on various length scales ranging from 10s of microns to ˜ 1 Å. Recently, combined electromagnetic and TEM studies on four flux-grown bicrystals have demonstrated a direct correlation between the length scale of the boundaries’ saw-tooth facet configurations and the apparent length scale of the electrical heterogeneity. In that work, enhanced critical current densities are observed at applied fields where the facet period is commensurate with the spacing of the Abrikosov flux vortices which must be pinned if higher critical current density values are recorded. To understand the microstructural origin of the flux pinning, the grain boundary topography and grain boundary dislocation (GBD) network structure of [001] tilt YBCO bicrystals were studied by TEM and HRTEM.


Coatings ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. 648 ◽  
Author(s):  
Hong-Gyu Park ◽  
Sang-Geon Park

We report the electro-optical properties of an organic thin-film by varying the thickness of 1,4,5,8,9,11-hexaazatriphenylene-hexacarbonitrile (HAT(CN)6), included therein as an interlayer. Devices with HAT(CN)6, which are 7 nm thin films used as interlayers, exhibited good current density–voltage characteristics due to an improved hole injection barrier resulting from carrier ladder effects and carrier transport phenomena. The device without an interlayer showed the worst driving voltage characteristics due to the hole injection barrier. At low driving voltages, a device using 7 nm HAT(CN)6 as an interlayer exhibited a current density about 9.9 times higher than that of a device using 20 nm HAT(CN)6, and showed a current density about 9600 times higher than that of a device without an interlayer. Due to the proper carrier balance, the device using 7 nm HAT(CN)6 as an interlayer achieved a maximum current efficiency of 10.8 cd/A, which was the highest among the devices studied. This shows that the electro-optical properties of devices using HAT(CN)6 as an interlayer are dominated by the holes.


1986 ◽  
Vol 87 (6) ◽  
pp. 907-932 ◽  
Author(s):  
J H Caldwell ◽  
D T Campbell ◽  
K G Beam

The loose patch voltage clamp has been used to map Na current density along the length of snake and rat skeletal muscle fibers. Na currents have been recorded from (a) endplate membrane exposed by removal of the nerve terminal, (b) membrane near the endplate, (c) extrajunctional membrane far from both the endplate and the tendon, and (d) membrane near the tendon. Na current densities recorded directly on the endplate were extremely high, exceeding 400 mA/cm2 in some patches. The membrane adjacent to the endplate has a current density about fivefold lower than that of the endplate, but about fivefold higher than the membrane 100-200 micron from the endplate. Small local variations in Na current density are recorded in extrajunctional membrane. A sharp decrease in Na current density occurs over the last few hundred micrometers from the tendon. We tested the ability of tetrodotoxin to block Na current in regions close to and far from the endplate and found no evidence for toxin-resistant channels in either region. There was also no obvious difference in the kinetics of Na current in the two regions. On the basis of the Na current densities measured with the loose patch clamp, we conclude that Na channels are abundant in the endplate and near-endplate membrane and are sparse close to the tendon. The current density at the endplate is two to three orders of magnitude higher than at the tendon.


2011 ◽  
Vol 43 (3) ◽  
pp. 313-326 ◽  
Author(s):  
M. Spasojevic ◽  
L. Ribic-Zelenovic ◽  
A. Maricic

Cobalt and nickel powders of three different compositions: Ni0.8Co0.2, Ni0.55Co0.45 and Ni0.2Co0.8 were obtained by electrodeposition from an ammonium chloride-sulphate solution. It was shown that the microstructure and morphology of the powders depended on the deposition current density as well as on the bath composition. Amorphous powder of Ni0.8Co0.2 was obtained at the current density higher than 200 mA cm-2, but nanocrystalline powders having the same composition were obtained at current densities lower than 200 mAcm-2. The nanocrystalline powders with lower Ni contents (0.55 and 0.2) obtained at a current density ranging from 40 mA cm-2 to 450 mA cm-2 were solid solutions of two phases, FCC (?-Ni) and HCP (?-Co) ones. The increase of the HCP phase in the powder was a result of both the Co content increase in the powder and decrease of the deposition current density.


2014 ◽  
Vol 1692 ◽  
Author(s):  
Steve H. Kilgore ◽  
Dieter K. Schroder

ABSTRACTThe electromigration lifetimes of a very large quantity of passivated electroplated Au interconnects were measured utilizing high-resolution in-situ resistance monitoring equipment. Application of moderate accelerated stress conditions with current density limited to 2 MA/cm2 and oven temperatures in the range of 300°C to 375°C prevented large Joule-heated temperature gradients and electrical overstress failures. A Joule-heated Au film temperature increase of 10°C on average was determined from measured temperature coefficients of resistance (TCRs). A failure criterion of 50% resistance degradation was selected to avoid thermal runaway and catastrophic open circuit failures. All Au lifetime distributions followed log-normal statistics. An activation energy of 0.80 ± 0.05 eV was measured from constant-current electromigration tests at multiple temperatures. A current density exponent of 1.91 ± 0.03 was extracted from multiple current densities at a single constant temperature.


The behaviour of a number of corrosion-resistant alloys in chloride solutions, in Hanks’s physiological solution (simulating the extracellular body fluids) and as surgical implants has been investigated by electrochemical means, namely potential-time curves for isolated specimens, potential-current density curves for anodes, and current density-time curves for anodes maintained electronically at constant potential. Microscopical observation of pitting attack has also been made. Alloys based on iron (e. g. stainless steels), nickel (e. g. Inconel, Nimonic 75, etc.), cobalt (Vitallium), titanium and tantalum exposed to chloride solutions all show a range of potential in which they are passive, and, at sufficiently high chloride concentration and sufficiently positive potential, breakdown giving rise to pits that are electrobrightened. This general phenomenon occurs, in 0·17M sodium chloride solution, at 0·2 to 0·5 V (normal hydrogen scale) for stainless steels, ca . 0·9 V for the cobalt·based alloys, and ca . 20 to 30 V for certain titanium alloys and tantalum. In the passive range, all the alloys show anode current densities in the range 10 -6 to below 10 -9 A/cm 2 , the smaller current densities given by the most passive alloys (e. g. titanium-5 % niobium) often tending to decrease yet further with passage of time. We conclude that stainless steels (even of the higher chromium-nickel quality) and nickel alloys are unlikely to resist all breakdown by pitting when exposed to the body fluids (or other media containing chloride) indefinitely; that the cobalt-based alloys may well withstand such exposure for very long times; and that titanium and (especially) some of its alloys should withstand such exposure for an indefinite period. The (extremely slow) passage of cobalt and titanium into the environment is caused by passage of cations through their passivating oxide films, without breakdown.


Author(s):  
Brandt J. Ruszkiewicz ◽  
Laine Mears

It has been shown that electrically assisted machining has the ability to reduce cutting force, change chip type, and improve surface finish. However, the effect of electricity on tungsten carbide has not been examined, a material often used to create cutting tools used in electrically assisted machining. During machining processes, depending on the type of cut, a small amount of the tool may be in contact with the workpiece. This will lead to an increased current density at that point on the tool which could lead to undesired effects with respect to tool wear and life. This paper conducts electrically assisted compression tests on uncoated tungsten carbide rod to examine the effect of electricity on the material and determine if there are any current densities that cause large magnitude weakening of the tungsten carbide. It is concluded that there is a maximum current density that can be passed through tungsten carbide before thermal softening becomes a problem. At a current density lower than this threshold, electricity has little effect on the strength of the carbide. This work is related to past electrically assisted turning experimentation.


1951 ◽  
Vol 35 (1) ◽  
pp. 1-16 ◽  
Author(s):  
John D. Anderson

The plasmodium of Physarum polycephalum reacts to direct current by migration toward the cathode. Cathodal migration was obtained upon a variety of substrata such as baked clay, paper, cellophane, and agar with a current density in the substratum of 1.0 µa./mm.2 Injury was produced by current densities of 8.0 to 12.0 µa./mm.2 The negative galvanotactic response was not due to electrode products. Attempts to demonstrate that the response was due to gradients or orientation in the substratum, pH changes in the mold, cataphoresis, electroosmosis, or endosmosis were not successful. The addition of salts (CaCl2, LiCl, NaCl, Na2SO4, NaHCO3, KCl, MgSO4, sodium citrate, and sea water) to agar indicated that change of cations had more effect than anions upon galvanotaxis and that the effect was upon threshold values. K ion (0.01 M KCl) increased the lower threshold value to 8.0 µa./mm.2 and the upper threshold value to 32.0 µa./mm.2, whereas the Li ion (0.01 M LiCl) increased the lower threshold to only 4.0 µa./mm.2 and the upper threshold to only 16.0 µa./mm.2 The passage of electric current produced no increase in the rate of cathodal migration; neither was there a decrease until injurious current densities were reached. With increase of subthreshold current densities there was a progressive decrease in rate of migration toward the anode until complete anodal inhibition occurred. There was orientation at right angles to the electrodes in alternating current (60 cycle) with current density of 4.0 µa./mm.2 and in direct current of 5.0 µa./mm.2 when polarity of current was reversed every minute. It is concluded that the negative galvanotactic response of P. polycephalum is due to inhibition of migration on the anodal side of the plasmodium and that this inhibition results in the limitation of the normal migration of the mold to a cathodal direction. The mechanism of the anodal inhibition has not been elucidated.


2015 ◽  
Vol 1754 ◽  
pp. 25-30
Author(s):  
Munekazu Motoyama ◽  
Makoto Ejiri ◽  
Yasutoshi Iriyama

ABSTRACTWe have studied electrochemical Li deposition/dissolution processes at amorphous solid electrolyte (LiPON) interfaces with 30-nm-thick-Cu-current collectors at different current densities by in-situ scanning electron microscopy (SEM). When the current density is smaller than 300 μA cm−2, Li islands continue to grow under a Cu film without coalescing with their neighbors. Consequently, they produce small cracks in the Cu film leading to isolated Li rod growth from the cracks. On the other hand, a current density of 1.0 mA cm−2 provokes the nucleation of Li islands with a higher number density. They rapidly coalesce under a Cu film in all lateral directions before cracking the Cu film. High current density conditions therefore suppress Li rod growths.


2008 ◽  
Vol 600-603 ◽  
pp. 1007-1010
Author(s):  
Michael E. Levinshtein ◽  
Tigran T. Mnatsakanov ◽  
Pavel A. Ivanov ◽  
John W. Palmour ◽  
Mrinal K. Das ◽  
...  

Self-heating in high-voltage 4H-SiC PiN diodes has been studied experimentally and theoretically in dc and 8-ms single pulse modes. To simulate the self-heating, an electro-thermal model was used to calculate non-isothermal current-voltage characteristics at dc and current-time dependences at pulsed measurements. The dynamic instability of N-type was observed: the current decreases in spite of increasing of bias applied to the structure. At dc, irreversible diode degradation was found to occur at a current density of about 1700 A/cm2. Under a single current surge 8-ms pulse, the loss of thermal stability has been found at a current density of approximately 9000 A/cm2. Comparison of experimental data and simulations showed that the local temperature in the diode base at the end of the 8-ms, 9000-A/cm2 pulse reaches 2000 – 2300 K.


Sign in / Sign up

Export Citation Format

Share Document