Porosity Volumetrics and Pore Typing

Author(s):  
John H. Doveton

The primary objective of porosity estimations based on measurements made either from petrophysical logs or core is the volume of pore space within the rock, given simply by the equation: . . . Φ = Vp/Vb . . . The Greek letter, phi, is the standard symbol for porosity and is expressed in this equation as the ratio of the volume of void space (Vp) to the bulk volume of the rock (Vb). The simplest concepts of porosity are generally explained in terms of the packing of spheres as the sum of the pore volume of the space between the spheres. There are five basic arrangements of uniform-sized spheres that can be constructed: simple cubic, orthorhombic, double-nested, face-centered cubic, and rhombohedral packing (Hook, 2003). Each has a geometrically defined pore volume that represents an upper limit for granular rocks whose constituent grains have a variety of sizes and shapes and whose pore volumes have been reduced by compaction and diagenetic cements. This intergranular model is a useful starting point for the characterization of pores in clastic rocks and will be considered first, before reviewing the additional complexities of pore geometry introduced by dissolution in carbonate rocks. The solid framework of a sandstone consists of a nonconductive “matrix” dominated by quartz, but commonly with accessory nonconductive minerals, and conductive clay minerals, whose electrical properties are caused by cation exchange with ions in saline formation water. It is important to distinguish between connected and unconnected pores, as well as larger pores that sustain fluid movement in contrast to smaller pores filled with capillary-bound water. A graphic presentation of these components is widely used in the petrophysical literature as a reference basis to disentangle terminology that can be confusing and contradictory. In particular, the term “effective porosity” has different meanings that vary from one technical discipline to another. In their review of porosity terms, Wu and Berg (2003) concluded that many core analysts considered all porosity to be effective, log analysts excluded clay-bound water, while petroleum engineers excluded both clay-bound and capillary-bound from porosity consideration, thereby restricting effective porosity to pores occupied by mobile fluids.

2020 ◽  
Vol 56 (49) ◽  
pp. 6715-6718 ◽  
Author(s):  
Zi-Jian Li ◽  
Yu Ju ◽  
Bowen Yu ◽  
Xiaoling Wu ◽  
Huangjie Lu ◽  
...  

Isoreticular expansion of Th-MOFs via modulated synthesis yielded seven hierarchical complexes with superior quality single crystals, record high void space and BET surface area among Th materials, and exceptional iodine adsorption capacities.


2018 ◽  
Vol 29 ◽  
pp. 00018 ◽  
Author(s):  
Michał Maruta ◽  
Vitalij Kułynycz

The scientific goal of the paper is the physical characteristics of pore space of the Inocereamian Sandstones located in the Skole Unit as a part of the Outer Carpathians – The Carpathian Flysch. Rock samples were tested using mercury porosimeter. Using this method, cumulative curves of effective porosity were obtained, as well as the pore geometry distribution and pore surface area distribution. geometry and distribution. In the article the authors determine the physical parameters of the pore space for 30 samples, such as porosity, permeability, size and distribution of pore diameter, specific surface area and geometry of a pore space. Preliminary analysis of rock samples is to answer the question of the existence of sandstones capable of forming "tight" type deposits of natural gas and determining their reservoir parameters.


Geophysics ◽  
2016 ◽  
Vol 81 (5) ◽  
pp. E297-E309 ◽  
Author(s):  
Qifei Niu ◽  
Manika Prasad ◽  
André Revil ◽  
Milad Saidian

Induced polarization (IP) has been broadly used for environmental and hydrogeological applications and in civil engineering. The IP response of a porous medium without metallic particles (described by its quadrature conductivity or its normalized chargeability) is controlled by the interfacial electrochemistry of the electrical double layer and the pore-space geometry. We use the specific surface per unit pore volume normalized by the formation factor (i.e., [Formula: see text]) as the controlling textural parameter for the quadrature conductivity. This relationship is obtained by averaging the surface conductance over the pore volume. A database that contains 76 samples (including porous borosilicate glass, sandstones, and clayey sediments) is used to check the new scaling. In addition to these data, we have conducted new IP measurements on 13 samples from the Middle Bakken Formation corresponding to low-porosity clayey materials. Comparison between the experimental data and our model confirms that the ratio [Formula: see text] is the dominant textural parameter describing the quadrature conductivity [Formula: see text] of a broad range of porous media. The database was also used to test whether the quadrature conductivity depended either on [Formula: see text], or the specific surface area [Formula: see text], or the ratio [Formula: see text] ([Formula: see text] being the connected porosity). Although the quadrature conductivity scales with [Formula: see text] and [Formula: see text] for high-porosity sandstones, these relationships are not appropriate for the low-porosity clayey materials presented in this study. However, experimental data support the dependence of the quadrature conductivity on [Formula: see text], a published relationship obtained through the volume averaging approach.


Geophysics ◽  
2005 ◽  
Vol 70 (1) ◽  
pp. F1-F10 ◽  
Author(s):  
Olivar A. L. de Lima ◽  
Michael Ben Clennell ◽  
Geraldo Girão Nery ◽  
Sri Niwas

The dc electrical response of freshwater-saturated shaly sandstone is analyzed on the basis of effective volume conductivity concepts for a concentrated mixture of “solid grains” in a continuous electrolyte. The bulk conductivity of this model is physically controlled by (1) the effective porosity and the average electrical tortuosity of its free-pore electrolyte, and (2) the amount and concentration of bound water that coats charged solid surfaces (mainly of clays), and a corresponding averaged electrical surface tortuosity. The latter is combined in an equivalent volume conductivity that is mainly due to the electrical double layers of charges developed at the clay-electrolyte interfaces. Analytical expressions, based on effective medium and general mixture theories, are developed to describe both the whole rock conductivity and the specific conductivities of its constituent elements. The derived equations for the bulk conductivity of the system describe, with sufficient precision, experimental core data over a large range of water conductivity. The equations are also written in a modified Archie-Winsauer form, wherein their coefficients are shown to be strongly dependent on the electrolyte and matrix conductivity, the effective medium porosity, and the cementation exponent. The scheme is shown to describe satisfactorily laboratory data for clay gels, shales, and shaly sandstones saturated with saline to fresh water. The scheme can also be used for interpreting resistivity logs of wells in freshwater aquifers. To accomplish this, we use the simultaneous measurements of formation resistivity at two different values of salinity: the freshwater virgin zone obtained from a deep induction log or laterolog and the mud filtrate–invaded zone inferred from a short normal or microfocused log. It must be assumed that either the effective porosity or the cementation exponent, and the native water and mud filtrate resistivities are known from other sources. The new method is being applied to the interpretation of logging data from wells drilled in the Recôncavo-Tucano Basin, Bahia, northeast Brazil.


2019 ◽  
Author(s):  
Matthias Sprenger ◽  
Pilar Llorens ◽  
Carles Cayuela ◽  
Francesc Gallart ◽  
Jérôme Latron

Abstract. Storage and release of water in the soils is critical for sustaining plant transpiration and groundwater recharge. However, the subsurface mixing of water available for plants or quickly flowing to streams and groundwater is not yet understood. Moreover, while water infiltrating into soils was shown to bypass older pore water, the mechanisms leading to a separation between water routed to the streams and water held tightly in smaller pores are unclear. Here we present an extensive data set, for which we sampled fortnightly the isotopic composition (2H and 18O) of mobile and bulk soil water in parallel with groundwater, stream water and rainfall in the Mediterranean long-term research catchment, Vallcebre, in Spain. The data revealed that mobile and tightly bound water of a silty loam soil in a Scots pine forest do not mix, but they constitute two separate subsurface water pools; despite intense rainfall events leading to high soil wetness. We show that the isotopic compartmentation results from rewetting of small soil pores with isotopically depleted winter/spring rain. Thus, stable isotopes, and therefore water residence times too, do not only vary across soil depth, but also across soil pores. Our findings have important implications for stable isotope applications in ecohydrological studies assessing water uptake by plants or process realism of hydrological models, as the observed processes are currently rarely implemented in the simulation of water partitioning into evapotranspiration and recharge in the critical zone.


Author(s):  
H. M. Bondar

The paper presents the problem of collectors secondary porosity, which is the main component of the total effective porosity. Different aspects of this problem are considered: the origin and distribution of secondary porosity in the rock, the dependency between the structure of the pore space and its filtration properties, the formation of hydrocarbons deposits at great depths, the role of post-sedimentation processes in the formation of secondary porosity and fractures, as well as the issue of secondary porosity prediction and its role in prospecting secondary oil and gas reservoirs.


Energies ◽  
2019 ◽  
Vol 12 (11) ◽  
pp. 2094 ◽  
Author(s):  
Yujie Yuan ◽  
Reza Rezaee

Porosity and pore size distribution (PSD) are essential petrophysical parameters controlling permeability and storage capacity in shale gas reservoirs. Various techniques to assess pore structure have been introduced; nevertheless, discrepancies and inconsistencies exist between each of them. This study compares the porosity and PSD in two different shale formations, i.e., the clay-rich Permian Carynginia Formation in the Perth Basin, Western Australia, and the clay-poor Monterey Formation in San Joaquin Basin, USA. Porosity and PSD have been interpreted based on nuclear magnetic resonance (NMR), low-pressure N2 gas adsorption (LP-N2-GA), mercury intrusion capillary pressure (MICP) and helium expansion porosimetry. The results highlight NMR with the advantage of detecting the full-scaled size of pores that are not accessible by MICP, and the ineffective/closed pores occupied by clay bound water (CBW) that are not approachable by other penetration techniques (e.g., helium expansion, low-pressure gas adsorption and MICP). The NMR porosity is largely discrepant with the helium porosity and the MICP porosity in clay-rich Carynginia shales, but a high consistency is displayed in clay-poor Monterey shales, implying the impact of clay contents on the distinction of shale pore structure interpretations between different measurements. Further, the CBW, which is calculated by subtracting the measured effective porosity from total porosity, presents a good linear correlation with the clay content (R2 = 0.76), implying that our correlated equation is adaptable to estimate the CBW in shale formations with the dominant clay type of illite.


Geophysics ◽  
2014 ◽  
Vol 79 (6) ◽  
pp. D377-D387 ◽  
Author(s):  
Zeyu Zhang ◽  
Andreas Weller

The geometry of pore structure of reservoir rock is described by the shape, size, distribution and connection of pores, and pore throats of rocks. Pore-space properties are important for the description and characterization of fluid storage and transport in reservoir rocks. We used the fractal concept to describe the geometric structure of the pores of 24 samples from an Eocene sandstone formation in China. The fractal behavior of pore volume distribution was investigated by capillary pressure curves and nuclear magnetic resonance (NMR). Additionally, the fractal dimension of the pore surface was determined based on data of the specific surface area per unit pore volume ([Formula: see text]). The comparison of fractal dimensions determined by three different methods indicates a clear differentiation into the “surface dimension” and “volume dimension.” The fractal dimension resulting from longer transverse NMR relaxation times and lower capillary pressure reflects the volume dimension of larger pores. The fractal dimension derived from the short NMR relaxation times is similar to the fractal dimension of the internal surface. The surface dimension increases with rising [Formula: see text]. The average value of surface dimension was determined to be 2.31 for the set of Eocene sandstones. This value of fractal dimension was successfully applied in a model of permeability prediction that is based on formation factor and specific surface area ([Formula: see text]).


2018 ◽  
Author(s):  
Zeyu Zhang ◽  
Sabine Kruschwitz ◽  
Andreas Weller ◽  
Matthias Halisch

Abstract. We investigate the pore space of rock samples with respect to different petrophysical parameters using various methods, which provide data upon pore size distributions, including micro computed tomography (μ-CT), mercury intrusion porosimetry (MIP), nuclear magnetic resonance (NMR), and spectral induced polarization (SIP). The resulting cumulative distributions of pore volume as a function of pore size are compared. Considering that the methods differ with regard to their limits of resolution, a multiple length scale characterization of the pore space geometry is proposed, that is based on a combination of the results from all of these methods. The approach is demonstrated using samples of Bentheimer and Röttbacher sandstone. Additionally, we compare the potential of SIP to provide a pore size distribution with other commonly used methods (MIP, NMR). The limits of resolution of SIP depend on the usable frequency range (between 0.002 Hz and 100 Hz). The methods with similar resolution show a similar behavior of the cumulative pore volume distribution in the overlapping pore size range. We assume that μ-CT and NMR provide the pore body size while MIP and SIP characterize the pore throat size. Our study shows that a good agreement between the pore radii distributions can only be achieved if the curves are adjusted considering the resolution and pore volume in the relevant range of pore radii. The MIP curve with the widest range in resolution should be used as reference.


Sign in / Sign up

Export Citation Format

Share Document