Effect of Nitrogen, Phosphorus and Potassium Additions on Plant Biomass and Soil Nutrient Content of a Swale Barrier Strand Community in Louisiana

1990 ◽  
Vol 66 (3) ◽  
pp. 265-271 ◽  
Author(s):  
K. M. DOUGHERTY ◽  
I. A. MENDELSSOHN ◽  
F. J. MONTEFERRANTE
PLoS ONE ◽  
2014 ◽  
Vol 9 (3) ◽  
pp. e91998 ◽  
Author(s):  
Kadri Koorem ◽  
Antonio Gazol ◽  
Maarja Öpik ◽  
Mari Moora ◽  
Ülle Saks ◽  
...  

Agriculture ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1219
Author(s):  
Xiaodan Wang ◽  
Hua Ma ◽  
Chunyun Guan ◽  
Mei Guan

The rapidly emerging fertilizer rapeseed used as green manure has wide applications for use. However, there have been few studies on its decomposition and effects on soil nutrients and microorganisms after its decay. In this study, 12 rapeseed lines to be screened were decomposed through a randomized block field design with two green-manure-specific varieties as the controls. The contents of nitrogen, phosphorus, and potassium from the plants, soil nutrients, and microbial changes after degradation were measured. There were substantial differences in the rates of decomposition and cumulative release of nutrients among the different lines after 30 days of rolling. The contents of phosphorus and potassium in the soil were 1.23–2.03 and 3.93–6.32 times those before decomposition, respectively. In addition, there was a significant difference in the relative content of soil microorganisms at the phylum level after the decomposition of different species of rapeseeds. Most of the top 20 bacterial groups significantly correlated with the characteristics of plant decomposition and soil nutrient content, including Proteobacteria, Actinomycetes, Armatimonadetes, Rokubacteria, and Planctomycetes. A principal component analysis showed that the soil microorganisms and nutrients are the leading factors that enable the evaluation of the decomposing characteristics of green manure rapeseed. Numbers 5 (purple leaf mustard) and 8 (Xiafang self-seeding) were more effective than two controls, which can be used as excellent types of germplasm to promote the breeding of green manure rapeseed.


Agriculture ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1129
Author(s):  
Yiping Peng ◽  
Lu Wang ◽  
Li Zhao ◽  
Zhenhua Liu ◽  
Chenjie Lin ◽  
...  

Soil nutrients play a vital role in plant growth and thus the rapid acquisition of soil nutrient content is of great significance for agricultural sustainable development. Hyperspectral remote-sensing techniques allow for the quick monitoring of soil nutrients. However, at present, obtaining accurate estimates proves to be difficult due to the weak spectral features of soil nutrients and the low accuracy of soil nutrient estimation models. This study proposed a new method to improve soil nutrient estimation. Firstly, for obtaining characteristic variables, we employed partial least squares regression (PLSR) fit degree to select an optimal screening algorithm from three algorithms (Pearson correlation coefficient, PCC; least absolute shrinkage and selection operator, LASSO; and gradient boosting decision tree, GBDT). Secondly, linear (multi-linear regression, MLR; ridge regression, RR) and nonlinear (support vector machine, SVM; and back propagation neural network with genetic algorithm optimization, GABP) algorithms with 10-fold cross-validation were implemented to determine the most accurate model for estimating soil total nitrogen (TN), total phosphorus (TP), and total potassium (TK) contents. Finally, the new method was used to map the soil TK content at a regional scale using the soil component spectral variables retrieved by the fully constrained least squares (FCLS) method based on an image from the HuanJing-1A Hyperspectral Imager (HJ-1A HSI) of the Conghua District of Guangzhou, China. The results identified the GBDT-GABP was observed as the most accurate estimation method of soil TN ( of 0.69, the root mean square error of cross-validation (RMSECV) of 0.35 g kg−1 and ratio of performance to interquartile range (RPIQ) of 2.03) and TP ( of 0.73, RMSECV of 0.30 g kg−1 and RPIQ = 2.10), and the LASSO-GABP proved to be optimal for soil TK estimations ( of 0.82, RMSECV of 3.39 g kg−1 and RPIQ = 3.57). Additionally, the highly accurate LASSO-GABP-estimated soil TK (R2 = 0.79) reveals the feasibility of the LASSO-GABP method to retrieve soil TK content at the regional scale.


2019 ◽  
Vol 11 (4) ◽  
pp. 311-316
Author(s):  
L. Nenova ◽  
M. Benkova ◽  
Ts. Simeonova ◽  
I. Atanassova

Abstract. The aim of the study was to assess the influence of different fertilizer doses on the content of macroelements (nitrogen, phosphorus and potassium) in dry biomass and grain of maize during the 2016 – 2018 period. A field experiment with fertilization of maize was carried out on Alluvial-meadow soil (Fluvisol) in the region of Tsalapitsa village, near Plovdiv. Three variants of mineral fertilization were studied V2 (N15P10K0), V3 (N20P15K0) and V4 (N25P20K0), and a control variant V1 (N0P0K0) – without fertilization. It was established that N% content in maize dry biomass was affected significantly by the variants of fertilization (18% of the variance). Significant differences (P≤0.05) between the control variant and all the variants of fertilization were established. Increasing the fertilizer dose, nitrogen content in dry biomass increased, too. The highest was the average content of nitrogen in maize leaves (0.94%), followed by the cobs (0.71%) and the lowest was the content in the stems (0.58%). Phosphorus and potassium content of dry biomass were affected significantly by the year of the study (10% and 9% of the variance, respectively). At the 7-8th leaf growth stage of maize, the highest nutrients content (N, P, K) in dry biomass were reported. With aging of plants the nutrient content in their biomass decreased. Nitrogen, phosphorus and potassium content in maize grain was significantly affected by the year of the experiment. Mineral fertilization had impact mostly on the nitrogen content of the grain, which was the highest in V3 variant, accepted as optimal – 0.66% on average.


2017 ◽  
Vol 63 (No. 6) ◽  
pp. 250-256 ◽  
Author(s):  
Li Zhi ◽  
Zhang Ling ◽  
Chen Jing ◽  
Zhang Xueling ◽  
Yu Suqin ◽  
...  

Vegetation restorations of degraded meadows have been widely implemented. The evaluation of soil nutrient changes as affected by degradation is vital for efficient restorations. However, while macronutrients (nitrogen, phosphorus and potassium) have been widely investigated, sulfur (S) as one important element correlated tightly with other nutrients has not been thoroughly studied. Two studies were conducted to determine changes of sulfur as affected by degradation and elevation gradients. The results showed that available S (AS) changed non-linearly with elevation and the first principal component based on other soil nutrient variables. Soil AS depended on degradation levels and contributed substantially to the separation of meadows with different degradation levels. Moreover, AS responded stronger to changes in elevation gradients and degradation levels compared with other major nutrients. Thereby, AS could be an important nutrient responding to meadow disturbance, which should be considered in future studies on meadow soil nutrients cycling and vegetation restorations. The findings have implications for ecological restoration of degraded meadows with respect to soil nutrient management and conservations.


2018 ◽  
Vol 43 (2) ◽  
pp. 211-218
Author(s):  
U Hassi ◽  
MT Hossain ◽  
SMI Huq

A pot experiment was carried out to assess the effects of arsenic and aquatic fern (Marsilea minuta L.), when applied as a phytoremediator, on the nutrient content (nitrogen, phosphorus, and potassium) of rice. Two sets of pot experiments were conducted in the net house on rice (Oryza sativa L.) together with aquatic fern (M. minuta) and on aquatic fern (M. minuta) alone where soils were treated with 1 mg/L As-solution at 80% arsenite and 20% arsenate. No significant difference was found in the nitrogen, phosphorus, and potassium concentrations of rice, in the absence of arsenic, whether grown in the presence of M. minuta or not. The uptake of total nitrogen, phosphorus, and potassium was found to be 36%, 23%, and 22% more, respectively in rice plants treated with M. minuta and arsenic over the control treatment, although the results were statistically insignificant. However, a significant negative relationship was found between arsenic and root nitrogen (P-value of 0.0017) when grown together with arsenic and M. minuta. A significant positive relationship was found between arsenic and shoot phosphorus (P-value of 0.0025) as well as arsenic and shoot and root potassium (P-values were 0.0045 and 0.0115, respectively). The results indicate that Marsilea minuta might be used as a phytoremediator of As together with rice plants.Bangladesh J. Agril. Res. 43(2): 211-218, June 2018


1979 ◽  
Vol 9 (2) ◽  
pp. 224-230 ◽  
Author(s):  
P. E. Pope

Dry weights and nutrient contents of all aboveground biomass components were estimated for four seed sources of 11-year-old loblolly pine (Pinustaeda L.) grown in plantations of the same spacing on an old-field site of high quality in the hilly region of north-central Arkansas, U.S.A. Soil nutrient content was estimated to a depth of 0.61 m. Stand data averaged over all seeds sources are in agreement with published reports for dry weight and nutrient accumulation for loblolly pine if differences associated with seasonal variation are considered. Seed source significantly affected total dry matter and nutrient accumulations. Estimated total aboveground mean annual accumulation of biomass for the four seed sources ranged from 5.99 × 103 to 11.17 × 103 kg/ha per year. Elemental accumulation (kilograms per hectare per year) ranged from 14.06 to 23.66 for N, 1.54 to 3.45 for P, and 6.96 to 18.43 for K. On the average, trees comprise 84% of the aboveground plant biomass and contain 76% of the N, 77% of the P, and 90%, of the K associated with plant tissue. The significant influence of seed source on these stand values can affect the potential impact of short rotation, total tree harvesting on long-term site productivity. The elemental content of the tree biomass ranged from 7 to 11% of the total N, 20 to 35% of the P, and 14 to 30% of the K in the soil–litter–plant system.


2014 ◽  
Vol 998-999 ◽  
pp. 1466-1469
Author(s):  
Li Ying Cao ◽  
Xiao Xian Zhang ◽  
Yue Ling Zhao ◽  
Gui Fen Chen

Soil nutrient level is an important factor affecting the yield of corn, to find out the effect of nitrogen, phosphorus, potassium on maize yield, analysis of bivariate correlation in SPSS based on the relationship between nutrient content, nitrogen, phosphorus, potassium in the plot and each plot yield directly was analyzed, the experimental results show that it doesn't matter: P, K and the yield of corn, corn yield and nitrogen related.


Sign in / Sign up

Export Citation Format

Share Document