scholarly journals Nitrogen Partitioning in the Photosynthetic Apparatus of Plantago asiatica Leaves Grown Under Different Temperature and Light Conditions: Similarities and Differences Between Temperature and Light Acclimation

2005 ◽  
Vol 46 (8) ◽  
pp. 1283-1290 ◽  
Author(s):  
Kouki Hikosaka
1986 ◽  
Vol 41 (5-6) ◽  
pp. 597-603 ◽  
Author(s):  
Aloysius Wild ◽  
Matthias Höpfner ◽  
Wolfgang Rühle ◽  
Michael Richter

The effect of different growth light intensities (60 W·m-2, 6 W·m-2) on the performance of the photosynthetic apparatus of mustard plants (Sinapis alba L.) was studied. A distinct decrease in photosystem II content per chlorophyll under low-light conditions compared to high-light conditions was found. For P-680 as well as for Oᴀ and Oв protein the molar ratio between high-light and low-light plants was 1.4 whereas the respective concentrations per chlorophyll showed some variations for P-680 and Oᴀ on the one and Oв protein on the other hand.In addition to the study of photosystem II components, the concentrations of PQ, Cyt f, and P-700 were measured. The light regime during growth had no effect on the amount of P-700 per chlorophyll but there were large differences with respect to PQ and Cyt f. The molar ratio for Cyt f and PQ between high- and low-light leaves was 2.2 and 1.9, respectively.Two models are proposed, showing the functional organization of the pigment system and the electron transport chain in thylakoids of high-light and low-light leaves of mustard plants.


1982 ◽  
Vol 37 (10) ◽  
pp. 889-897 ◽  
Author(s):  
H. K. Lichtenthaler ◽  
D. Meier ◽  
G. Retzlaff ◽  
R. Hamm

Abstract The inhibition of photosynthetic CO2-assimilation and of the variable chlorophyll fluorescence as well as uptake and transport of 14C-labelled bentazon and the possibilities for a herbicideinduced shade-type modification of the photosynthetic apparatus were investigated in bentazonsensitive weeds (Galium, Sinapis, Raphanus) and in the tolerant crop plants wheat and maize.1. In weeds the depression of photosynthetic CO2-assimilation is irreversible, whereas tolerant plants recover due to the metabolization of the active herbicide.2. A lower rate of uptake and transport of bentazon associated with its fast metabolization is the reason for the tolerance of crop plants towards bentazon.3. The transport of [14C]bentazon proceeds in the tracheary elements of the xylem. Uptake and transport of bentazon in the weeds are light dependent.4. The loss of variable fluorescence (Kautsky effect) in the leaves after root application o f bentazon proceeds much faster at high-light than at low light conditions and confirms the light-dependency of the bentazon transport.5. In the sensitive dicot weeds bentazon not only inhibits photosynthetic electron flow and depresses CO2-fixation but also induces the formation of shade-type chloroplasts which are less efficient in photosynthetic quantum conversion. This bentazon-induced modification of the photosynthetic apparatus (e.g. changes in ultrastructure, pigment ratios, and levels of chloro-phyll-proteins) contributes to the effectiveness of bentazon as a herbicide.


2019 ◽  
Vol 60 (12) ◽  
pp. 2672-2683 ◽  
Author(s):  
HyunSeok Lim ◽  
Ayumi Tanaka ◽  
Ryouichi Tanaka ◽  
Hisashi Ito

Abstract In plants, chlorophyll (Chl) a and b are interconvertible by the action of three enzymes—chlorophyllide a oxygenase, Chl b reductase (CBR) and 7-hydroxymethyl chlorophyll a reductase (HCAR). These reactions are collectively referred to as the Chl cycle. In plants, this cyclic pathway ubiquitously exists and plays essential roles in acclimation to different light conditions at various developmental stages. By contrast, only a limited number of cyanobacteria species produce Chl b, and these include Prochlorococcus, Prochloron, Prochlorothrix and Acaryochloris. In this study, we investigated a possible existence of the Chl cycle in Chl b synthesizing cyanobacteria by testing in vitro enzymatic activities of CBR and HCAR homologs from Prochlorothrix hollandica and Acaryochloris RCC1774. All of these proteins show respective CBR and HCAR activity in vitro, indicating that both cyanobacteria possess the potential to complete the Chl cycle. It is also found that CBR and HCAR orthologs are distributed only in the Chl b-containing cyanobacteria that habitat shallow seas or freshwater, where light conditions change dynamically, whereas they are not found in Prochlorococcus species that usually habitat environments with fixed lighting. Taken together, our results implicate a possibility that the Chl cycle functions for light acclimation in Chl b-containing cyanobacteria.


2018 ◽  
Vol 1859 ◽  
pp. e106-e107
Author(s):  
Václav Karlický ◽  
Michal Štroch ◽  
Irena Kurasová ◽  
Zuzana Materová ◽  
Kristýna Večeřová ◽  
...  

2014 ◽  
Vol 369 (1640) ◽  
pp. 20130223 ◽  
Author(s):  
Oliver Ebenhöh ◽  
Geoffrey Fucile ◽  
Giovanni Finazzi ◽  
Jean-David Rochaix ◽  
Michel Goldschmidt-Clermont

Photosynthetic eukaryotes house two photosystems with distinct light absorption spectra. Natural fluctuations in light quality and quantity can lead to unbalanced or excess excitation, compromising photosynthetic efficiency and causing photodamage. Consequently, these organisms have acquired several distinct adaptive mechanisms, collectively referred to as non-photochemical quenching (NPQ) of chlorophyll fluorescence, which modulates the organization and function of the photosynthetic apparatus. The ability to monitor NPQ processes fluorometrically has led to substantial progress in elucidating the underlying molecular mechanisms. However, the relative contribution of distinct NPQ mechanisms to variable light conditions in different photosynthetic eukaryotes remains unclear. Here, we present a mathematical model of the dynamic regulation of eukaryotic photosynthesis using ordinary differential equations. We demonstrate that, for Chlamydomonas , our model recapitulates the basic fluorescence features of short-term light acclimation known as state transitions and discuss how the model can be iteratively refined by comparison with physiological experiments to further our understanding of light acclimation in different species.


Planta ◽  
2008 ◽  
Vol 228 (4) ◽  
pp. 573-587 ◽  
Author(s):  
Raik Wagner ◽  
Lars Dietzel ◽  
Katharina Bräutigam ◽  
Wolfgang Fischer ◽  
Thomas Pfannschmidt

1999 ◽  
Vol 54 (9-10) ◽  
pp. 840-848 ◽  
Author(s):  
Ad H. C. M. Schapendonk ◽  
Oijen ◽  
Sander C. Pot ◽  
Riki Van den Boogaard ◽  
Jeremy Harbinson

Optimization of nitrogen supply in a tomato plant is stepwise assessed, from chloroplast characteristics to whole crop performance. Experiments are reported in which important key processes are quantified in relation to the nitrogen content of leaves. Interactions of N effects with leaf aging and canopy light distribution are analyzed. A simulation model that integrates this knowledge is constructed. The results of three nitrogen partitioning scenarios for Rubisco suggest that optimization of the distribution of Rubisco between leaf layers is less important for plant productivity than within-leaf optimization of the photosynthetic apparatus


Author(s):  
Piotr Dąbrowski ◽  
Bogumiła Pawluśkiewicz ◽  
Aneta H. Baczewska ◽  
Izabela Łukasik ◽  
Vasilij Goltsev ◽  
...  

Abstract Unfavorable light conditions in urban areas are one of the most important cause of inappropriate grass communities condition. The possibility to detect the plant stress caused by shade is an important element in shaping the environment. The answer to following questions: what is the ability to detect the stress caused by shade in chosen lawn varieties of Perennial ryegrass by using the chlorophyll a fluorescence (O-J-I-P test) and which of tested varieties has the best properties to create grasslands in reduced light conditions is the aim of this work. Two-factor experimental micro-plot was conducted with three varieties and three different shadowing variants. Chlorophyll a fluorescence measurements were provided and were compared to leaf density. Our results explored significant difference between selected varieties in the terms of their photosynthetic apparatus adaption to light conditions. During May, all tested varieties were characterized by the rise of all fluorescence curve points under lower light intensity. The largest changes under shade conditions were noticed for the variety ‘Taya’. During next months a declining trend of photosynthetic efficiency for this variety was observed. On the basis of our results, we assume that each variety has unique threshold and needs of light intensity.


Sign in / Sign up

Export Citation Format

Share Document