Major components of the KARRIKIN INSENSITIVE2-dependent signaling pathway are conserved in the liverwort Marchantia polymorpha

2021 ◽  
Author(s):  
Yohei Mizuno ◽  
Aino Komatsu ◽  
Shota Shimazaki ◽  
Satoshi Naramoto ◽  
Keisuke Inoue ◽  
...  

Abstract KARRIKIN INSENSITIVE2 (KAI2) was first identified as a receptor of karrikins, smoke-derived germination stimulants. KAI2 is also considered a receptor of an unidentified endogenous molecule called the KAI2-ligand (KL). Upon KAI2 activation, signals are transmitted through degradation of D53/SMXL proteins via MAX2-dependent ubiquitination. Although components in the KAI2-dependent signaling pathway, namely MpKAI2A and MpKAI2B, MpMAX2, and MpSMXL, exist in the genome of the liverwort Marchantia polymorpha, their functions remain unknown. Here, we show that early thallus growth is retarded and gemma dormancy in the dark is suppressed in Mpkai2a and Mpmax2 loss-of-function mutants. These defects are counteracted in Mpkai2a Mpsmxl and Mpmax2 Mpsmxl double mutants indicating that MpKAI2A, MpMAX2 and MpSMXL act in the same genetic pathway. Introduction of MpSMXLd53, in which a domain required for degradation is mutated, into wild-type plants mimicks Mpkai2a and Mpmax2 plants. In addition, detection of citrine fluorescence in Nicotiana benthamiana cells transiently expressing a SMXL-Citrine fusion protein requires treatment with MG132, a proteasome inhibitor. These findings imply that MpSMXL is subjected to degradation, and that degradation of MpSMXL is crucial for MpKAI2A-dependent signaling in M. polymorpha. Therefore, we claim that the basic mechanisms in the KAI2-dependent signaling pathway are conserved in M. polymorpha.

2019 ◽  
Author(s):  
Jennifer S. Lanni ◽  
David Peal ◽  
Laura Ekstrom ◽  
Haining Chen ◽  
Caroline Stanclift ◽  
...  

SummaryThe coordination of growth during development establishes proportionality within and among the different anatomic structures of organisms. Innate memory of this proportionality is preserved, as shown in the ability of regenerating structures to return to their original size. Although the regulation of this coordination is incompletely understood, mutant analyses of zebrafish with long-finned phenotypes have uncovered important roles for bioelectric signaling in modulating growth and size of the fins and barbs. To date, long-finned mutants identified are caused by hypermorphic mutations, leaving unresolved whether such signaling is required for normal development. We isolated a new zebrafish mutant, schleier, with proportional overgrowth phenotypes caused by a missense mutation and loss of function in the K+-Cl− cotransporter Kcc4a. Genetic depletion of Kcc4a in wild-type fish leads to a dose-dependent loss of growth restriction in fins and barbs, supporting a requirement for Kcc4a in regulation of proportion. Epistasis experiments suggest that Kcc4a and the two-pore potassium channel Kcnk5b both contribute to a common bioelectrical signaling response in the fin. These data suggest that an integrated bioelectric signaling pathway is required for the coordination of size and proportion during development.Graphical Abstract


2020 ◽  
Author(s):  
Yohei Mizuno ◽  
Aino Komatsu ◽  
Shota Shimazaki ◽  
Xiaonan Xie ◽  
Kimitsune Ishizaki ◽  
...  

AbstractKARRIKIN INSENSITIVE2 (KAI2) was first identified in Arabidopsis thaliana as a receptor of karrikin, a smoke-derived germination stimulant. KAI2 is also considered a receptor of an unidentified endogenous molecule called the KAI2-ligand (KL). Upon KAI2 activation, signals are transmitted through degradation of D53/SMXL proteins via ubiquitination by a Skp-Cullin-F-box (SCF) E3 ubiquitin ligase complex. All components in the KL signaling pathway exist in the liverwort Marchantia polymorpha, namely MpKAI2A and MpKAI2B, MpMAX2 encoding the F-box protein, and MpSMXL, indicating that the signaling pathway became functional in the common ancestor of bryophytes and seed plants. Genetic analysis using knock-out mutants of these KL signaling genes, produced using the CRISPR system, indicated that MpKAI2A, MpMAX2 and MpSMXL act in the same genetic pathway and control early gemma growth. Introduction of MpSMXLd53, in which a domain required for degradation is mutated, into wild-type plants caused phenotypes resembling those of the Mpkai2a and Mpmax2 mutants. In addition, Citrine fluorescence was detected in tobacco cells transiently transformed with the 35S:MpSMXL-Citrine gene construct and treated with MG132, a proteasome inhibitor. On the other hand, introduction of 35S:MpSMXLd53-Citrine conferred Citrine fluorescence without MG132 treatment. These findings imply that MpSMXL is subjected to degradation, and that degradation of MpSMXL is crucial for KL signaling in M. polymorpha. We also showed that MpSMXL is negatively regulated by KL signaling. Taken together, this study demonstrates that basic mechanisms in the KL signaling pathway are conserved in M. polymorpha.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 27-28
Author(s):  
Xiaoqian Liu ◽  
Yuping Li ◽  
Xuxiang Liu ◽  
Wei Qi ◽  
Jibin Zhang ◽  
...  

Recurrent VAV1 mutations and gene fusions (VAV1-THAP4, VAV1-MYO1F, and VAV1-S100A7) have been identified in peripheral T-cell lymphoma (PTCL) including angioimmunoblastic T-cell lymphoma (AITL) patients. A common theme of these genetic aberrations is the loss of the auto-inhibitory C-terminal SH3 domain of VAV1 resulting in aberrant activation of VAV1 independent of normal activation events. Although mouse models support VAV1 mutation/fusion as having a driver oncogenic role in the pathogenesis of PTCL, investigations on VAV1 activity in human cells were performed mainly on the Jurkat cell line with exogenous expression of VAV1 fusion proteins. This approach has un-physiological expression of VAV1 and the functions of VAV1 fusion/mutation under normal endogenous regulation need to be explored. In this study, we introduced a fusion gene, similar to what has been observed in PTCL, into the endogenous VAV1 locus. The fusion gene was under normal regulatory controls instead of being over-expressed by a viral vector, thus providing a more accurate assessment of its function in vivo. To simulate VAV1 fusion, we knocked in a green fluorescence protein (GFP) sequence followed by a simian virus 40 (SV40) poly(A) signal into intron 25 of VAV1 locus by clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein 9 (Cas9) technology. A homologous DNA repair (HDR) template with tandem homologous sequences of VAV1 gene, GFP gene, and a SV40 transcription poly(A) signal was electroporated into Jurkat cells together with the Cas9/sgRNA ribonucleoprotein (RNP) complex. This knock-in disrupted the transcription of exon 26 and exon 27, resulting in an in-frame fusion protein with GFP fused to the C-terminal of SH2 of VAV1 (VAV1SH2-GFP)(Figure A). Because our guide RNA targeted the intron 25 sequence by CRISPR/Cas9 system, any possible indels caused by non-homologous end joining will occur within the intron and will not change the protein sequence of the wild type VAV1. The GFP expressing cells were isolated from the edited cell population by FACS. The fusion of GFP with VAV1 in the sorted cells was confirmed by western blot (Figure B) and these cells displayed a heterozygous VAV1SH2-GFP fusion/wild type (WT) phenotype that mimicked the VAV1 translocations observed in PTCL patients. Jurkat cells with VAV1SH2-GFP showed spontaneous activation of the T-cell receptor (TCR) signaling pathway. Analysis of signaling events downstream of VAV1 demonstrated increased phosphorylation in ITK, LCK, and subsequent ERK in Jurkat cells with VAV1SH2-GFP compared with WT Jurkat cells by western blot (Figure B). We also observed consistently elevated pERK in Jurkat cells with VAV1SH2-GFP by flow cytometry (Figure C). Notably, this elevation in pERK was spontaneous and independent of TCR stimulation with anti-CD3 antibody. VAV1SH2-GFP fusion protein also led to marked activation of downstream NFAT and NF-κB pathways as shown by Luciferase reporter assays (Figure D). Similarly, the enhanced NFAT and NF-κB pathway activation in Jurkat with the fusion protein was independent of TCR stimulation. Interestingly, with antiCD3 stimulation, Jurkat cells with VAV1SH2-GFP showed significantly lower pERK, NFAT and NF-κB activity compared to WT Jurkat cells with anti-CD3 stimulation. In conclusion, in Jurkat cells genetically edited with VAV1SH2-GFP, spontaneous activation of TCR signaling and subsequently increased NFAT and NF-κB activity were observed. Our findings further support that VAV1 C-terminal SH3 domain plays an important regulatory role in blocking VAV1 activity in the absence of proper activation. Removing C-terminal SH3 domain or replacing it with GFP or other protein relieves this inhibition, allowing spontaneous activation independent of TCR stimulation. Our study also indicates the sensitivity of the TCR signaling pathway to the level of activation and hyperactivation is detrimental. To validate the function of VAV1SH2-GFP in normal T cells, we have also successfully edited primary CD4+ T cells with VAV1SH2-GFP and the TCR signaling pathway in edited primary CD4+ T cell is currently being evaluated with and without anti-CD3/CD28 stimulation. Figure Disclosures No relevant conflicts of interest to declare.


2019 ◽  
Author(s):  
Anna Thamm ◽  
Timothy E Saunders ◽  
Liam Dolan

ABSTRACTLateral inhibition patterns differentiated cells during development in bacteria, metazoans and land plants. Tip-growing rhizoid cells develop among flat epidermal cells in the epidermis of the early diverging land plant Marchantia polymorpha. We show that the majority of rhizoid cells develop individually but some develop in linear, one-dimensional clusters of between two and seven rhizoid cells in wild type plants. The distribution of rhizoid cells can be accounted for within a simple model of lateral inhibition. The model also predicted that, in the absence of lateral inhibition, rhizoid cell clusters would be two-dimensional with larger clusters than those formed with lateral inhibition. Rhizoid differentiation in Marchantia polymorpha is positively regulated by the ROOT HAIR DEFECTIVE SIX-LIKE1 (MpRSL1) basic Helix Loop Helix (bHLH) transcription factor which is directly repressed by the FEW RHIZOIDS1 (MpFRH1) miRNA. To test if MpFRH1 miRNA acts during lateral inhibition we generated loss-of-function mutants that did not produce the MpFRH1 miRNA. Two-dimensional clusters of rhizoids develop in Mpfrh1loss-of-function (lof) mutants as predicted by the model for plants that lack lateral inhibition. Furthermore, clusters of up to nine rhizoid cells developed in the Mpfrh1lof mutants compared to a maximum number of seven observed in wild type. The higher steady state levels of MpRSL1 mRNA in Mpfrh1lof mutants indicate that MpFRH1-mediated lateral inhibition involves the repression of MpRSL1 activity. Together the modelling and genetic data indicate that the pattern of cell differentiation in the M. polymorpha epidermis is consistent with a lateral inhibition process in which MpFRH1 miRNA represses MpRSL1. This discovery suggests that novel mechanisms of lateral inhibition may operate in different lineages of land plants, unlike metazoans where the conserved Delta-Notch signaling system controls lateral inhibition in diverse metazoan lineages.


Diabetes ◽  
2018 ◽  
Vol 67 (Supplement 1) ◽  
pp. 1730-P
Author(s):  
RASHEED AHMAD ◽  
NADEEM AKHTER ◽  
SHIHAB P. KOCHUMON ◽  
AREEJ ABU ALROUB ◽  
REEBY S. THOMAS ◽  
...  

2020 ◽  
Vol 65 (1) ◽  
pp. e01948-20
Author(s):  
Dalin Rifat ◽  
Si-Yang Li ◽  
Thomas Ioerger ◽  
Keshav Shah ◽  
Jean-Philippe Lanoix ◽  
...  

ABSTRACTThe nitroimidazole prodrugs delamanid and pretomanid comprise one of only two new antimicrobial classes approved to treat tuberculosis (TB) in 50 years. Prior in vitro studies suggest a relatively low barrier to nitroimidazole resistance in Mycobacterium tuberculosis, but clinical evidence is limited to date. We selected pretomanid-resistant M. tuberculosis mutants in two mouse models of TB using a range of pretomanid doses. The frequency of spontaneous resistance was approximately 10−5 CFU. Whole-genome sequencing of 161 resistant isolates from 47 mice revealed 99 unique mutations, of which 91% occurred in 1 of 5 genes previously associated with nitroimidazole activation and resistance, namely, fbiC (56%), fbiA (15%), ddn (12%), fgd (4%), and fbiB (4%). Nearly all mutations were unique to a single mouse and not previously identified. The remaining 9% of resistant mutants harbored mutations in Rv2983 (fbiD), a gene not previously associated with nitroimidazole resistance but recently shown to be a guanylyltransferase necessary for cofactor F420 synthesis. Most mutants exhibited high-level resistance to pretomanid and delamanid, although Rv2983 and fbiB mutants exhibited high-level pretomanid resistance but relatively small changes in delamanid susceptibility. Complementing an Rv2983 mutant with wild-type Rv2983 restored susceptibility to pretomanid and delamanid. By quantifying intracellular F420 and its precursor Fo in overexpressing and loss-of-function mutants, we provide further evidence that Rv2983 is necessary for F420 biosynthesis. Finally, Rv2983 mutants and other F420H2-deficient mutants displayed hypersusceptibility to some antibiotics and to concentrations of malachite green found in solid media used to isolate and propagate mycobacteria from clinical samples.


Sign in / Sign up

Export Citation Format

Share Document