Intragenic tRNA-promoted R-loops orchestrate transcription interference for plant oxidative stress responses

2021 ◽  
Author(s):  
Kunpeng Liu ◽  
Qianwen Sun

Abstract Eukaryotic genomes are transcribed by at least three RNA polymerases, RNAPI, II, and III. Co-transcriptional R-loops play diverse roles in genome regulation and maintenance. However, little is known about how R-loops regulate transcription interference, the transcriptional event that is caused by different RNA polymerases transcribing the same genomic templates. Here, we established that the intragenic tRNA genes can promote sense R-loop enrichment (named intra-tR-loops) in Arabidopsis thaliana, and found that intra-tR-loops are decreased in an RNAPIII mutant, nrpc7-1 (NUCLEAR RNA POLYMERASE C, SUBUNIT 7). NRPC7 is co-localized with RNAPIIS2P at intragenic tRNA genes and interferes with RNAPIIS2P elongation. Conversely, the binding of NRPC7 at intragenic tRNA genes is increased following inhibition of RNAPII elongation. The transcription of specific tRNA host genes is inhibited by RNAPIII, and the inhibition of tRNA host genes is intra-tR-loop dependent. Moreover, alleviating the inhibition of tRNAPro-induced intra-tR-loops on its host gene AtNUDX1 (Arabidopsis Nudix hydrolase 1) promotes oxidative stress tolerance in Arabidopsis thaliana. Our work suggests intra-tR-loops regulate host gene expression by modulating RNA polymerases interference.

2015 ◽  
Vol 150 ◽  
pp. 36-43 ◽  
Author(s):  
Eline Saenen ◽  
Nele Horemans ◽  
Nathalie Vanhoudt ◽  
Hildegarde Vandenhove ◽  
Geert Biermans ◽  
...  

PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e8757 ◽  
Author(s):  
Artem Nedoluzhko ◽  
Fedor Sharko ◽  
Md. Golam Rbbani ◽  
Anton Teslyuk ◽  
Ioannis Konstantinidis ◽  
...  

Circular RNAs (circRNAs) are long noncoding RNAs that play a significant role in various biological processes, including embryonic development and stress responses. These regulatory molecules can modulate microRNA activity and are involved in different molecular pathways as indirect regulators of gene expression. Thousands of circRNAs have been described in diverse taxa due to the recent advances in high throughput sequencing technologies, which led to a huge variety of total RNA sequencing being publicly available. A number of circRNA de novo and host gene prediction tools are available to date, but their ability to accurately predict circRNA host genes is limited in the case of low-quality genome assemblies or annotations. Here, we present CircParser, a simple and fast Unix/Linux pipeline that uses the outputs from the most common circular RNAs in silico prediction tools (CIRI, CIRI2, CircExplorer2, find_circ, and circFinder) to annotate circular RNAs, assigning presumptive host genes from local or public databases such as National Center for Biotechnology Information (NCBI). Also, this pipeline can discriminate circular RNAs based on their structural components (exonic, intronic, exon-intronic or intergenic) using a genome annotation file.


Antioxidants ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1143
Author(s):  
Midori Sakashita ◽  
Tetsuhiro Tanaka ◽  
Reiko Inagi

Diabetic kidney disease (DKD) is a major cause of end-stage kidney disease, and it is crucial to understand the pathophysiology of DKD. The control of blood glucose levels by various glucose-lowering drugs, the common use of inhibitors of the renin–angiotensin system, and the aging of patients with diabetes can alter the disease course of DKD. Moreover, metabolic changes and associated atherosclerosis play a major role in the etiology of DKD. The pathophysiology of DKD is largely attributed to the disruption of various cellular stress responses due to metabolic changes, especially an increase in oxidative stress. Therefore, many antioxidants have been studied as therapeutic agents. Recently, it has been found that NRF2, a master regulator of oxidative stress, plays a major role in the pathogenesis of DKD and bardoxolone methyl, an activator of NRF2, has attracted attention as a drug that increases the estimated glomerular filtration rate in patients with DKD. This review outlines the altered stress responses of cellular organelles in DKD, their involvement in the pathogenesis of DKD, and discusses strategies for developing therapeutic agents, especially bardoxolone methyl.


2021 ◽  
Vol 9 (7) ◽  
pp. 1463
Author(s):  
Tamirat Tefera Temesgen ◽  
Kristoffer Relling Tysnes ◽  
Lucy Jane Robertson

Cryptosporidium oocysts are known for being very robust, and their prolonged survival in the environment has resulted in outbreaks of cryptosporidiosis associated with the consumption of contaminated water or food. Although inactivation methods used for drinking water treatment, such as UV irradiation, can inactivate Cryptosporidium oocysts, they are not necessarily suitable for use with other environmental matrices, such as food. In order to identify alternative ways to inactivate Cryptosporidium oocysts, improved methods for viability assessment are needed. Here we describe a proof of concept for a novel approach for determining how effective inactivation treatments are at killing pathogens, such as the parasite Cryptosporidium. RNA sequencing was used to identify potential up-regulated target genes induced by oxidative stress, and a reverse transcription quantitative PCR (RT-qPCR) protocol was developed to assess their up-regulation following exposure to different induction treatments. Accordingly, RT-qPCR protocols targeting thioredoxin and Cryptosporidium oocyst wall protein 7 (COWP7) genes were evaluated on mixtures of viable and inactivated oocysts, and on oocysts subjected to various potential inactivation treatments such as freezing and chlorination. The results from the present proof-of-concept experiments indicate that this could be a useful tool in efforts towards assessing potential technologies for inactivating Cryptosporidium in different environmental matrices. Furthermore, this approach could also be used for similar investigations with other pathogens.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Guiomar Martín ◽  
Yamile Márquez ◽  
Federica Mantica ◽  
Paula Duque ◽  
Manuel Irimia

Abstract Background Alternative splicing (AS) is a widespread regulatory mechanism in multicellular organisms. Numerous transcriptomic and single-gene studies in plants have investigated AS in response to specific conditions, especially environmental stress, unveiling substantial amounts of intron retention that modulate gene expression. However, a comprehensive study contrasting stress-response and tissue-specific AS patterns and directly comparing them with those of animal models is still missing. Results We generate a massive resource for Arabidopsis thaliana, PastDB, comprising AS and gene expression quantifications across tissues, development and environmental conditions, including abiotic and biotic stresses. Harmonized analysis of these datasets reveals that A. thaliana shows high levels of AS, similar to fruitflies, and that, compared to animals, disproportionately uses AS for stress responses. We identify core sets of genes regulated specifically by either AS or transcription upon stresses or among tissues, a regulatory specialization that is tightly mirrored by the genomic features of these genes. Unexpectedly, non-intron retention events, including exon skipping, are overrepresented across regulated AS sets in A. thaliana, being also largely involved in modulating gene expression through NMD and uORF inclusion. Conclusions Non-intron retention events have likely been functionally underrated in plants. AS constitutes a distinct regulatory layer controlling gene expression upon internal and external stimuli whose target genes and master regulators are hardwired at the genomic level to specifically undergo post-transcriptional regulation. Given the higher relevance of AS in the response to different stresses when compared to animals, this molecular hardwiring is likely required for a proper environmental response in A. thaliana.


Author(s):  
Metti K. Gari ◽  
Paul Lemke ◽  
Kelly H. Lu ◽  
Elizabeth D. Laudadio ◽  
Austin H. Henke ◽  
...  

Lithium cobalt oxide (LiCoO2), an example of nanoscale transition metal oxide and a widely commercialized cathode material in lithium ion batteries, has been shown to induce oxidative stress and generate intracellular reactive oxygen species (ROS) in model organisms.


Sign in / Sign up

Export Citation Format

Share Document