scholarly journals Holoparasitic Plant–Host Interactions and their Impact on Mediterranean Ecosystems

2021 ◽  
Author(s):  
Andrea Casadesús ◽  
Sergi Munné-Bosch

Abstract Although photosynthesis is essential to sustain life on Earth, not all plants use sunlight to synthesize nutrients from carbon dioxide and water. Holoparasitic plants, which are important in agricultural and natural ecosystems, are dependent on other plants for nutrients. Phytohormones are crucial in holoparasitic plant–host interactions, from seed germination to senescence, not only because they act as growth and developmental regulators, but also because of their central role in the regulation of host photosynthesis and source–sink relations between the host and the holoparasitic plant. Here, we compile and discuss current knowledge on the impact and ecophysiology of holoparasitic plants (such as the broomrapes Orobanche sp. and Phelipanche sp.) that infest economically important dicotyledonous crops in Mediterranean agroecosystems (legumes [Fabaceae], sunflowers [Helianthus sp.] or tomato [Solanum lycopersicum] plants). We also highlight the role of holoparasitic plant–host interactions (such as those between Cytinus hypocistis and various shrubs of the genus Cistus) in shaping natural Mediterranean ecosystems. The roles of phytohormones in controlling plant–host interactions, abiotic factors in parasitism, and the biological significance of natural seed banks and how dormancy and germination are regulated, will all be discussed. Holoparasitic plants are unique organisms; improving our understanding of their interaction with hosts as study models will help us to better manage parasitic plants, both in agricultural and natural ecosystems.

Insects ◽  
2018 ◽  
Vol 9 (4) ◽  
pp. 158 ◽  
Author(s):  
Joanna Reinhold ◽  
Claudio Lazzari ◽  
Chloé Lahondère

The temperature of the environment is one of the most important abiotic factors affecting the life of insects. As poikilotherms, their body temperature is not constant, and they rely on various strategies to minimize the risk of thermal stress. They have been thus able to colonize a large spectrum of habitats. Mosquitoes, such as Ae. aegypti and Ae. albopictus, vector many pathogens, including dengue, chikungunya, and Zika viruses. The spread of these diseases has become a major global health concern, and it is predicted that climate change will affect the mosquitoes’ distribution, which will allow these insects to bring new pathogens to naïve populations. We synthesize here the current knowledge on the impact of temperature on the mosquito flight activity and host-seeking behavior (1); ecology and dispersion (2); as well as its potential effect on the pathogens themselves and how climate can affect the transmission of some of these pathogens (3).


2018 ◽  
Vol 108 (3) ◽  
pp. 312-326 ◽  
Author(s):  
Alex A. Blacutt ◽  
Scott E. Gold ◽  
Kenneth A. Voss ◽  
Minglu Gao ◽  
Anthony E. Glenn

The importance of understanding the biology of the mycotoxigenic fungus Fusarium verticillioides and its various microbial and plant host interactions is critical given its threat to maize, one of the world’s most valuable food crops. Disease outbreaks and mycotoxin contamination of grain threaten economic returns and have grave implications for human and animal health and food security. Furthermore, F. verticillioides is a member of a genus of significant phytopathogens and, thus, data regarding its host association, biosynthesis of secondary metabolites, and other metabolic (degradative) capabilities are consequential to both basic and applied research efforts across multiple pathosystems. Notorious among its secondary metabolites are the fumonisin mycotoxins, which cause severe animal diseases and are implicated in human disease. Additionally, studies of these mycotoxins have led to new understandings of F. verticillioides plant pathogenicity and provide tools for research into cellular processes and host–pathogen interaction strategies. This review presents current knowledge regarding several significant lines of F. verticillioides research, including facets of toxin production, virulence, and novel fitness strategies exhibited by this fungus across rhizosphere and plant environments.


2020 ◽  
Vol 655 ◽  
pp. 123-137
Author(s):  
TM Grimes ◽  
MT Tinker ◽  
BB Hughes ◽  
KE Boyer ◽  
L Needles ◽  
...  

Protective legislation and management have led to an increase in California’s sea otter Enhydra lutris nereis population. While sea otter recovery has been linked to ecosystem benefits, sea otter predation may negatively affect commercially valuable species. Understanding the potential influence of sea otters is of particular importance as their range expands into estuaries that function as nurseries for commercially valuable species like Dungeness crab Metacarcinus magister. We consider how sea otter predation has affected the abundance and size of juvenile Dungeness crab in Elkhorn Slough, California, USA, and analyzed cancrid crab abundance and size across 4 California estuaries with and without sea otters to understand how biotic and abiotic factors contribute to observed variation in crab size and abundance. We compared trends in southern sea otters relative to Dungeness crab landings in California to assess whether increasing sea otter abundance have negatively impacted landings. In Elkhorn Slough, juvenile Dungeness crab abundance and size have declined since 2012, coinciding with sea otter population growth. However, the impact of sea otters on juvenile Dungeness crab size was habitat-specific and only significant in unvegetated habitat. Across estuaries, we found that cancrid crab abundance and size were negatively associated with sea otter presence. While abiotic factors varied among estuaries, these factors explained little of the observed variation in crab abundance or size. Although we found evidence that sea otters can have localized effects on cancrid crab populations within estuaries, we found no evidence that southern sea otters, at recent population sizes, have negatively impacted Dungeness crab landings in California from 2000-2014.


2020 ◽  
Vol 13 (1) ◽  
pp. 19
Author(s):  
Lauren E. H. Mathews ◽  
Alicia M. Kinoshita

A combination of satellite image indices and in-field observations was used to investigate the impact of fuel conditions, fire behavior, and vegetation regrowth patterns, altered by invasive riparian vegetation. Satellite image metrics, differenced normalized burn severity (dNBR) and differenced normalized difference vegetation index (dNDVI), were approximated for non-native, riparian, or upland vegetation for traditional timeframes (0-, 1-, and 3-years) after eleven urban fires across a spectrum of invasive vegetation cover. Larger burn severity and loss of green canopy (NDVI) was detected for riparian areas compared to the uplands. The presence of invasive vegetation affected the distribution of burn severity and canopy loss detected within each fire. Fires with native vegetation cover had a higher severity and resulted in larger immediate loss of canopy than fires with substantial amounts of non-native vegetation. The lower burn severity observed 1–3 years after the fires with non-native vegetation suggests a rapid regrowth of non-native grasses, resulting in a smaller measured canopy loss relative to native vegetation immediately after fire. This observed fire pattern favors the life cycle and perpetuation of many opportunistic grasses within urban riparian areas. This research builds upon our current knowledge of wildfire recovery processes and highlights the unique challenges of remotely assessing vegetation biophysical status within urban Mediterranean riverine systems.


2021 ◽  
Vol 9 (3) ◽  
pp. 293
Author(s):  
Mauro Corriere ◽  
Lucía Soliño ◽  
Pedro Reis Costa

Natural high proliferations of toxin-producing microorganisms in marine and freshwater environments result in dreadful consequences at the socioeconomically and environmental level due to water and seafood contamination. Monitoring programs and scientific evidence point to harmful algal blooms (HABs) increasing in frequency and intensity as a result of global climate alterations. Among marine toxins, the okadaic acid (OA) and the related dinophysistoxins (DTX) are the most frequently reported in EU waters, mainly in shellfish species. These toxins are responsible for human syndrome diarrhetic shellfish poisoning (DSP). Fish, like other marine species, are also exposed to HABs and their toxins. However, reduced attention has been given to exposure, accumulation, and effects on fish of DSP toxins, such as OA. The present review intends to summarize the current knowledge of the impact of DSP toxins and to identify the main issues needing further research. From data reviewed in this work, it is clear that exposure of fish to DSP toxins causes a range of negative effects, from behavioral and morphological alterations to death. However, there is still much to be investigated about the ecological and food safety risks related to contamination of fish with DSP toxins.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Emma Stump ◽  
Lauren M. Childs ◽  
Melody Walker

Abstract Background Mosquitoes are vectors for diseases such as dengue, malaria and La Crosse virus that significantly impact the human population. When multiple mosquito species are present, the competition between species may alter population dynamics as well as disease spread. Two mosquito species, Aedes albopictus and Aedes triseriatus, both inhabit areas where La Crosse virus is found. Infection of Aedes albopictus by the parasite Ascogregarina taiwanensis and Aedes triseriatus by the parasite Ascogregarina barretti can decrease a mosquito’s fitness, respectively. In particular, the decrease in fitness of Aedes albopictus occurs through the impact of Ascogregarina taiwanensis on female fecundity, larval development rate, and larval mortality and may impact its initial competitive advantage over Aedes triseriatus during invasion. Methods We examine the effects of parasitism of gregarine parasites on Aedes albopictus and triseriatus population dynamics and competition with a focus on when Aedes albopictus is new to an area. We build a compartmental model including competition between Aedes albopictus and triseriatus while under parasitism of the gregarine parasites. Using parameters based on the literature, we simulate the dynamics and analyze the equilibrium population proportion of the two species. We consider the presence of both parasites and potential dilution effects. Results We show that increased levels of parasitism in Aedes albopictus will decrease the initial competitive advantage of the species over Aedes triseriatus and increase the survivorship of Aedes triseriatus. We find Aedes albopictus is better able to invade when there is more extreme parasitism of Aedes triseriatus. Furthermore, although the transient dynamics differ, dilution of the parasite density through uptake by both species does not alter the equilibrium population sizes of either species. Conclusions Mosquito population dynamics are affected by many factors, such as abiotic factors (e.g. temperature and humidity) and competition between mosquito species. This is especially true when multiple mosquito species are vying to live in the same area. Knowledge of how population dynamics are affected by gregarine parasites among competing species can inform future mosquito control efforts and help prevent the spread of vector-borne disease.


2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Kendall A. Johnson ◽  
Clive H. Bock ◽  
Phillip M. Brannen

Abstract Background Phony peach disease (PPD) is caused by the plant pathogenic bacterium Xylella fastidiosa subsp. multiplex (Xfm). Historically, the disease has caused severe yield loss in Georgia and elsewhere in the southeastern United States, with millions of PPD trees being removed from peach orchards over the last century. The disease remains a production constraint, and management options are few. Limited research has been conducted on PPD since the 1980s, but the advent of new technologies offers the opportunity for new, foundational research to form a basis for informed management of PPD in the U.S. Furthermore, considering the global threat of Xylella to many plant species, preventing import of Xfm to other regions, particularly where peach is grown, should be considered an important phytosanitary endeavor. Main topics We review PPD, its history and impact on peach production, and the eradication efforts that were conducted for 42 years. Additionally, we review the current knowledge of the pathogen, Xfm, and how that knowledge relates to our understanding of the peach—Xylella pathosystem, including the epidemiology of the disease and consideration of the vectors. Methods used to detect the pathogen in peach are discussed, and ramifications of detection in relation to management and control of PPD are considered. Control options for PPD are limited. Our current knowledge of the pathogen diversity and disease epidemiology are described, and based on this, some potential areas for future research are also considered. Conclusion There is a lack of recent foundational research on PPD and the associated strain of Xfm. More research is needed to reduce the impact of this pathogen on peach production in the southeastern U.S., and, should it spread internationally, wherever peaches are grown.


2021 ◽  
Vol 10 (7) ◽  
pp. 1490
Author(s):  
Ana Reis ◽  
Sara Rocha ◽  
Victor de Freitas

During the 20th century processed and ready-to-eat foods became routinely consumed resulting in a sharp rise of fat, salt, and sugar intake in people’s diets. Currently, the global incidence of obesity, raised blood lipids, hypertension, and diabetes in an increasingly aged population contributes to the rise of atherothrombotic events and cardiovascular diseases (CVD) mortality. Drug-based therapies are valuable strategies to tackle and help manage the socio-economic impact of atherothrombotic disorders though not without adverse side effects. The inclusion of fresh fruits and vegetables rich in flavonoids to human diets, as recommended by WHO offers a valuable nutritional strategy, alternative to drug-based therapies, to be explored in the prevention and management of atherothrombotic diseases at early stages. Though polyphenols are mostly associated to color and taste in foods, food flavonoids are emerging as modulators of cholesterol biosynthesis, appetite and food intake, blood pressure, platelet function, clot formation, and anti-inflammatory signaling, supporting the health-promoting effects of polyphenol-rich diets in mitigating the impact of risk factors in atherothrombotic disorders and CVD events. Here we overview the current knowledge on the effect of polyphenols particularly of flavonoid intake on the atherothrombotic risk factors and discuss the caveats and challenges involved with current experimental cell-based designs.


2021 ◽  
Vol 11 (6) ◽  
pp. 483
Author(s):  
Marwa Saadaoui ◽  
Manoj Kumar ◽  
Souhaila Al Khodor

The COVID-19 pandemic is a worldwide, critical public health challenge and is considered one of the most communicable diseases that the world had faced so far. Response and symptoms associated with COVID-19 vary between the different cases recorded, but it is amply described that symptoms become more aggressive in subjects with a weaker immune system. This includes older subjects, patients with chronic diseases, patients with immunosuppression treatment, and pregnant women. Pregnant women are receiving more attention not only because of their altered physiological and immunological function but also for the potential risk of viral vertical transmission to the fetus or infant. However, very limited data about the impact of maternal infection during pregnancy, such as the possibility of vertical transmission in utero, during birth, or via breastfeeding, is available. Moreover, the impact of infection on the newborn in the short and long term remains poorly understood. Therefore, it is vital to collect and analyze data from pregnant women infected with COVID-19 to understand the viral pathophysiology during pregnancy and its effects on the offspring. In this article, we review the current knowledge about pre-and post-natal COVID-19 infection, and we discuss whether vertical transmission takes place in pregnant women infected with the virus and what are the current recommendations that pregnant women should follow in order to be protected from the virus.


Sign in / Sign up

Export Citation Format

Share Document