scholarly journals Confining potential under the gauge field condensation in the SU(2) Yang-Mills theory

Author(s):  
Hirohumi Sawayanagi

Abstract QǬ potential is studied in the SU(2) gauge theory. Based on the nonlinear gauge of the Curci-Ferrari type, the possibility of a gluon condensation ⟨Aμ+ Aμ−⟩ in low-energy region has been considered at the one-loop level. Instead of the magnetic monopole condensation, this condensation makes classical gluons massive, and can yield a linear potential. We show this potential consists of the Coulomb plus linear part and an additional part. Comparing with the Cornell potential, we study this confining potential in detail, and find that the potential has two implicit scales rc and ˜R0. The meanings of these scales are clarified. We also show that the Cornell potential that fits well to this confining potential is obtained by taking these scales into account.

2006 ◽  
Vol 21 (20) ◽  
pp. 1567-1585
Author(s):  
BRIAN P. DOLAN

The evidence for the parallel rôles played by the modular group in [Formula: see text] supersymmetric Yang–Mills in (3+1) dimensions and the quantum Hall effect in (2+1) dimensions is reviewed. In both cases a subgroup of the full modular group acts as a map between different low energy phases of the theory, parametrised by a complex parameter in the upper-half-complex plane whose real part is a topological parameter and whose imaginary part is the coupling associated the kinetic term of the effective U(1) gauge theory. In the case of the quantum Hall effect experimental evidence in favour of the modular action is also reviewed.


2019 ◽  
Vol 35 (09) ◽  
pp. 2050060 ◽  
Author(s):  
I. L. Buchbinder ◽  
A. S. Budekhina ◽  
B. S. Merzlikin

We study the six-dimensional [Formula: see text] and [Formula: see text] supersymmetric Yang–Mills (SYM) theories in the component formulation. The one-loop divergencies of effective action are calculated. The leading one-loop low-energy contributions to bosonic sector of effective action are found. It is explicitly demonstrated that the contributions to effective potential for the constant background scalar fields are absent in the [Formula: see text] SYM theory.


2003 ◽  
Vol 18 (20) ◽  
pp. 1403-1412 ◽  
Author(s):  
Toru Shinohara

In the previous paper,1 we derived the Abelian projected effective gauge theory as a low energy effective theory of the SU (N) Yang–Mills theory by adopting the maximal Abelian gauge. At that time, we have demonstrated the multiplicative renormalizability of the propagators for the diagonal gluon and the dual Abelian antisymmetric tensor field. In this paper, we show the multiplicative renormalizability of the Green's functions also for the off-diagonal gluon. Moreover, we complement the previous results by calculating the anomalous dimension and the renormalization group functions which are undetermined in the previous paper.


2001 ◽  
Vol 16 (11) ◽  
pp. 1899-1911 ◽  
Author(s):  
T. R. MORRIS

A gauge invariant Wilsonian effective action is constructed for pure SU(N) Yang-Mills theory by formulating the corresponding flow equation. Manifestly gauge invariant calculations can be performed i.e. without gauge fixing or ghosts. Regularisation is implemented in a novel way which realises a spontaneously broken SU(N|N) supergauge theory. As an example we sketch the computation of the one-loop β function, performed for the first time without any gauge fixing.


2004 ◽  
Vol 01 (04) ◽  
pp. 493-544 ◽  
Author(s):  
STEPHEN C. ANCO

A basic problem of classical field theory, which has attracted growing attention over the past decade, is to find and classify all nonlinear deformations of linear abelian gauge theories. The physical interest in studying deformations is to address uniqueness of known nonlinear interactions of gauge fields and to look systematically for theoretical possibilities for new interactions. Mathematically, the study of deformations aims to understand the rigidity of the nonlinear structure of gauge field theories and to uncover new types of nonlinear geometrical structures. The first part of this paper summarizes and significantly elaborates a field-theoretic deformation method developed in earlier work. Some key contributions presented here are, firstly, that the determining equations for deformation terms are shown to have an elegant formulation using Lie derivatives in the jet space associated with the gauge field variables. Secondly, the obstructions (integrability conditions) that must be satisfied by lowest-order deformations terms for existence of a deformation to higher orders are explicitly identified. Most importantly, a universal geometrical structure common to a large class of nonlinear gauge theory examples is uncovered. This structure is derived geometrically from the deformed gauge symmetry and is characterized by a covariant derivative operator plus a nonlinear field strength, related through the curvature of the covariant derivative. The scope of these results encompasses Yang–Mills theory, Freedman–Townsend theory, and Einstein gravity theory, in addition to their many interesting types of novel generalizations that have been found in the past several years. The second part of the paper presents a new geometrical type of Yang–Mills generalization in three dimensions motivated from considering torsion in the context of nonlinear sigma models with Lie group targets (chiral theories). The generalization is derived by a deformation analysis of linear abelian Yang–Mills Chern–Simons gauge theory. Torsion is introduced geometrically through a duality with chiral models obtained from the chiral field form of self-dual (2+2) dimensional Yang–Mills theory under reduction to (2+1) dimensions. Field-theoretic and geometric features of the resulting nonlinear gauge theories with torsion are discussed.


1998 ◽  
Vol 13 (09) ◽  
pp. 1495-1505 ◽  
Author(s):  
TAKAHIRO MASUDA ◽  
HISAO SUZUKI

We show how to obtain the explicit form of the low energy quantum effect action for N=2 supersymmetric Yang–Mills theory in the weak coupling region from the underlying hyperelliptic Riemann surface. This is achieved by evaluating the integral representation of the fields explicitly. We calculate the leading instanton corrections for the group SU (Nc), SO (N) and SP (2N) and find that the one-instanton contribution of the prepotentials for these groups coincide with the one obtained recently by using the direct instanton calculation.


2021 ◽  
Vol 2021 (2) ◽  
Author(s):  
Changrim Ahn ◽  
Matthias Staudacher

Abstract We refine the notion of eclectic spin chains introduced in [1] by including a maximal number of deformation parameters. These models are integrable, nearest-neighbor n-state spin chains with exceedingly simple non-hermitian Hamiltonians. They turn out to be non-diagonalizable in the multiparticle sector (n > 2), where their “spectrum” consists of an intricate collection of Jordan blocks of arbitrary size and multiplicity. We show how and why the quantum inverse scattering method, sought to be universally applicable to integrable nearest-neighbor spin chains, essentially fails to reproduce the details of this spectrum. We then provide, for n=3, detailed evidence by a variety of analytical and numerical techniques that the spectrum is not “random”, but instead shows surprisingly subtle and regular patterns that moreover exhibit universality for generic deformation parameters. We also introduce a new model, the hypereclectic spin chain, where all parameters are zero except for one. Despite the extreme simplicity of its Hamiltonian, it still seems to reproduce the above “generic” spectra as a subset of an even more intricate overall spectrum. Our models are inspired by parts of the one-loop dilatation operator of a strongly twisted, double-scaled deformation of $$ \mathcal{N} $$ N = 4 Super Yang-Mills Theory.


2021 ◽  
Vol 2021 (3) ◽  
Author(s):  
J.M. Drummond ◽  
H. Paul

Abstract We consider α′ corrections to the one-loop four-point correlator of the stress- tensor multiplets in $$ \mathcal{N} $$ N = 4 super Yang-Mills at order 1/N4. Holographically, this is dual to string corrections of the one-loop supergravity amplitude on AdS5 × S5. While this correlator has been considered in Mellin space before, we derive the corresponding position space results, gaining new insights into the analytic structure of AdS loop amplitudes. Most notably, the presence of a transcendental weight three function involving new singularities is required, which has not appeared in the context of AdS amplitudes before. We thereby confirm the structure of string corrected one-loop Mellin amplitudes, and also provide new explicit results at orders in α′ not considered before.


2021 ◽  
Vol 2021 (7) ◽  
Author(s):  
Andrey Yu. Kotov ◽  
Daniel Nogradi ◽  
Kalman K. Szabo ◽  
Lorinc Szikszai

Abstract In previous work, [arXiv:1905.01909], we have calculated the mϱ/fπ ratio in the chiral and continuum limit for SU(3) gauge theory coupled to Nf = 2, 3, 4, 5, 6 fermions in the fundamental representation. The main result was that this ratio displays no statistically significant Nf-dependence. In the present work we continue the study of the Nf-dependence by extending the simulations to Nf = 7, 8, 9, 10. Along the way we also study in detail the Nf-dependence of finite volume effects on low energy observables and a particular translational symmetry breaking unphysical, lattice artefact phase specific to staggered fermions.


1979 ◽  
Vol 19 (12) ◽  
pp. 3649-3652 ◽  
Author(s):  
Eve Kovacs ◽  
Shui-Yin Lo

Sign in / Sign up

Export Citation Format

Share Document