scholarly journals Aligned 3D porous polyurethane scaffolds for biological anisotropic tissue regeneration

Author(s):  
Weiwei Lin ◽  
Wanling Lan ◽  
Yingke Wu ◽  
Daiguo Zhao ◽  
Yanchao Wang ◽  
...  

Abstract A green fabrication process (organic solvent-free) of artificial scaffolds is required in tissue engineering field. In this work, a series of aligned three-dimensional (3D) scaffolds are made from biodegradable waterborne polyurethane (PU) emulsion via directional freeze–drying method to ensure no organic byproducts. After optimizing the concentration of polymer in the emulsion and investigating different freezing temperatures, an aligned PUs scaffold (PU14) generated from 14 wt% polymer content and processed at −196°C was selected based on the desired oriented porous structure (pore size of 32.5 ± 9.3 μm, porosity of 92%) and balanced mechanical properties both in the horizontal direction (strength of 41.3 kPa, modulus of 72.3 kPa) and in the vertical direction (strength of 45.5 kPa, modulus of 139.3 kPa). The response of L929 cells and the regeneration of muscle tissue demonstrated that such pure material-based aligned 3D scaffold can facilitate the development of orientated cells and anisotropic tissue regeneration both in vitro and in vivo. Thus, these pure material-based scaffolds with ordered architecture have great potentials in tissue engineering for biological anisotropic tissue regeneration, such as muscle, nerve, spinal cord and so on.

2020 ◽  
Vol 48 (3) ◽  
pp. 755-764
Author(s):  
Benjamin B. Rothrauff ◽  
Rocky S. Tuan

Bone possesses an intrinsic regenerative capacity, which can be compromised by aging, disease, trauma, and iatrogenesis (e.g. tumor resection, pharmacological). At present, autografts and allografts are the principal biological treatments available to replace large bone segments, but both entail several limitations that reduce wider use and consistent success. The use of decellularized extracellular matrices (ECM), often derived from xenogeneic sources, has been shown to favorably influence the immune response to injury and promote site-appropriate tissue regeneration. Decellularized bone ECM (dbECM), utilized in several forms — whole organ, particles, hydrogels — has shown promise in both in vitro and in vivo animal studies to promote osteogenic differentiation of stem/progenitor cells and enhance bone regeneration. However, dbECM has yet to be investigated in clinical studies, which are needed to determine the relative efficacy of this emerging biomaterial as compared with established treatments. This mini-review highlights the recent exploration of dbECM as a biomaterial for skeletal tissue engineering and considers modifications on its future use to more consistently promote bone regeneration.


Author(s):  
Jing Jing Yang ◽  
Jian Fang Liu ◽  
Takayuki Kurokawa ◽  
Nobuto Kitamura ◽  
Kazunori Yasuda ◽  
...  

Hydrogels are used as scaffolds for tissue engineering in vitro & in vivo because their three-dimensional network structure and viscoelasticity are similar to those of the macromolecular-based extracellular matrix (ECM) in living tissue. Especially, the synthetic hydrogels with controllable and reproducible properties were used as scaffolds to study the behaviors of cells in vitro and implanted test in vivo. In this review, two different structurally designed hydrogels, single-network (SN) hydrogels and double-network (DN) hydrogels, were used as scaffolds. The behavior of two cell types, anchorage-dependent cells and anchorage-independent cells, and the differentiation behaviors of embryoid bodies (EBs) were investigated on these hydrogels. Furthermore, the behavior of chondrocytes on DN hydrogels in vitro and the spontaneous cartilage regeneration induced by DN hydrogels in vivo was examined.


2012 ◽  
Vol 91 (7) ◽  
pp. 642-650 ◽  
Author(s):  
K. Moharamzadeh ◽  
H. Colley ◽  
C. Murdoch ◽  
V. Hearnden ◽  
W.L. Chai ◽  
...  

Advances in tissue engineering have permitted the three-dimensional (3D) reconstruction of human oral mucosa for various in vivo and in vitro applications. Tissue-engineered oral mucosa have been further optimized in recent years for clinical applications as a suitable graft material for intra-oral and extra-oral repair and treatment of soft-tissue defects. Novel 3D in vitro models of oral diseases such as cancer, Candida, and bacterial invasion have been developed as alternatives to animal models for investigation of disease phenomena, their progression, and treatment, including evaluation of drug delivery systems. The introduction of 3D oral mucosal reconstructs has had a significant impact on the approaches to biocompatibility evaluation of dental materials and oral healthcare products as well as the study of implant-soft tissue interfaces. This review article discusses the recent advances in tissue engineering and applications of tissue-engineered human oral mucosa.


Author(s):  
I. M. Sebastine ◽  
D. J. Williams

Tissue engineering aims to restore the complex function of diseased tissue using cells and scaffold materials. Tissue engineering scaffolds are three-dimensional (3D) structures that assist in the tissue engineering process by providing a site for cells to attach, proliferate, differentiate and secrete an extra-cellular matrix, eventually leading cells to form a neo-tissue of predetermined, three-dimensional shape and size. For a scaffold to function effectively, it must possess the optimum structural parameters conducive to the cellular activities that lead to tissue formation; these include cell penetration and migration into the scaffold, cell attachment onto the scaffold substrate, cell spreading and proliferation and cell orientation. In vivo, cells are organized in functional tissue units that repeat on the order of 100 μm. Fine scaffold features have been shown to provide control over attachment, migration and differentiation of cells. In order to design such 3D featured constructs effectively understanding the biological response of cells across length scales from nanometer to millimeter range is crucial. Scaffold biomaterials may need to be tailored at three different length scales: nanostructure (<1μm), microstructure (<20–100μm), and macrostructure (>100μm) to produce biocompatible and biofunctional scaffolds that closely resemble the extracellular matrix (ECM) of the natural tissue environment and promote cell adhesion, attachment, spreading, orientation, rate of movement, and activation. Identification of suitable fabrication techniques for manufacturing scaffolds with the required features at multiple scales is a significant challenge. This review highlights the effect and importance of the features of scaffolds that can influence the behaviour of cells/tissue at different length scales in vitro to increase our understanding of the requirements for the manufacture of functional 3D tissue constructs.


Osteology ◽  
2021 ◽  
Vol 1 (3) ◽  
pp. 149-174
Author(s):  
Naveen Jeyaraman ◽  
Gollahalli Shivashankar Prajwal ◽  
Madhan Jeyaraman ◽  
Sathish Muthu ◽  
Manish Khanna

The field of tissue engineering has revolutionized the world in organ and tissue regeneration. With the robust research among regenerative medicine experts and researchers, the plausibility of regenerating cartilage has come into the limelight. For cartilage tissue engineering, orthopedic surgeons and orthobiologists use the mesenchymal stromal cells (MSCs) of various origins along with the cytokines, growth factors, and scaffolds. The least utilized MSCs are of dental origin, which are the richest sources of stromal and progenitor cells. There is a paradigm shift towards the utilization of dental source MSCs in chondrogenesis and cartilage regeneration. Dental-derived MSCs possess similar phenotypes and genotypes like other sources of MSCs along with specific markers such as dentin matrix acidic phosphoprotein (DMP) -1, dentin sialophosphoprotein (DSPP), alkaline phosphatase (ALP), osteopontin (OPN), bone sialoprotein (BSP), and STRO-1. Concerning chondrogenicity, there is literature with marginal use of dental-derived MSCs. Various studies provide evidence for in-vitro and in-vivo chondrogenesis by dental-derived MSCs. With such evidence, clinical trials must be taken up to support or refute the evidence for regenerating cartilage tissues by dental-derived MSCs. This article highlights the significance of dental-derived MSCs for cartilage tissue regeneration.


Molecules ◽  
2020 ◽  
Vol 25 (3) ◽  
pp. 737 ◽  
Author(s):  
Sahar Salehi ◽  
Kim Koeck ◽  
Thomas Scheibel

Due to its properties, such as biodegradability, low density, excellent biocompatibility and unique mechanics, spider silk has been used as a natural biomaterial for a myriad of applications. First clinical applications of spider silk as suture material go back to the 18th century. Nowadays, since natural production using spiders is limited due to problems with farming spiders, recombinant production of spider silk proteins seems to be the best way to produce material in sufficient quantities. The availability of recombinantly produced spider silk proteins, as well as their good processability has opened the path towards modern biomedical applications. Here, we highlight the research on spider silk-based materials in the field of tissue engineering and summarize various two-dimensional (2D) and three-dimensional (3D) scaffolds made of spider silk. Finally, different applications of spider silk-based materials are reviewed in the field of tissue engineering in vitro and in vivo.


2014 ◽  
Vol 15 (3-4) ◽  
Author(s):  
Lothar Koch ◽  
Andrea Deiwick ◽  
Boris Chichkov

AbstractCurrently, different 3D printing techniques are investigated for printing biomaterials and living cells. An ambitious aim is the printing of fully functional tissue or organs. Furthermore, for manifold applications in biomedical research and in testing of pharmaceuticals or cosmetics, printed tissue could be a new method, partly substituting test animals. Here we describe a laser-based printing technique applied for the arrangement of vital cells in two and three-dimensional patterns and for tissue engineering. First printed tissue, tested in vitro and in vivo, and printing of cell patterns for investigating cell-cell interactions are presented.


2021 ◽  
Author(s):  
Nameeta Shah ◽  
Pavan M. Hallur ◽  
Raksha A. Ganesh ◽  
Pranali Sonpatki ◽  
Divya Naik ◽  
...  

AbstractGlioblastoma is the most lethal primary malignant brain tumor in adults. Simplified two-dimensional (2D) cell culture and neurospheres in vitro models fail to recapitulate the complexity of the tumor microenvironment, limiting its ability to predict therapeutic response. Three-dimensional (3D) scaffold-based models have emerged as a promising alternative for addressing these concerns. One such 3D system is gelatin methacrylate (GelMA) hydrogels, which can be used for modeling the glioblastoma microenvironment. We characterized the phenotype of patient-derived glioma cells cultured in GelMA hydrogels (3D-GMH) for their tumorigenic properties using invasion and chemoresponse assays. In addition, we used integrated single-cell and spatial transcriptome analysis to compare cells cultured in 3D-GMH to cells in vivo. Finally, we assessed tumor-immune cell interactions with a macrophage infiltration assay and a cytokine array. We show that cells cultured in 3D-GMH develop a mesenchymal-like cellular phenotype found in perivascular and hypoxic regions present in the core of the tumor, and recruit macrophages by secreting cytokines in contrast to the cells grown as neurospheres that match the phenotype of cells of the infiltrative edge of the tumor.


Sign in / Sign up

Export Citation Format

Share Document