scholarly journals The impact of threat of shock-induced anxiety on the neural substrates of memory encoding and retrieval

2019 ◽  
Vol 14 (10) ◽  
pp. 1087-1096
Author(s):  
Michele Garibbo ◽  
Jessica Aylward ◽  
Oliver J Robinson

Abstract Dysfunctional memory processes are widely reported in anxiety disorders, but the underlying neurocognitive mechanisms are unclear. Recent work shows that the impact of anxiety on memory depends on the context and memory modality. For instance, threat of shock, a translational within-subject anxiety induction, has been shown to impair the encoding of facial stimuli, while improving spatial working memory (WM) accuracy. The present study aimed to delineate the neural circuitry regulating these opposing behavioural effects. Thirty-three healthy volunteers performed the previously assessed facial recognition and a spatial WM tasks inside an fMRI scanner, under alternating within-subject conditions of threat or safe from shock across encoding and retrieval. Facial recognition impairments were replicated when threat was selectively induced at encoding. Neuroimaging results suggest that this effect was driven by increased competition for attentional resources within the anterior cingulate cortex, in which activation correlated positively with stress levels. The impact of threat on spatial WM performance did not, however, replicate in the fMRI environment. Nevertheless, state-dependent hippocampal activation was observed in both tasks. These findings suggest a neurocognitive mechanism by which anxiety impairs facial recognition as well as a state-dependent hippocampal activation pattern, which may putatively underline retrieval of negative experiences in anxiety.

2017 ◽  
Vol 24 (10) ◽  
pp. 532-542 ◽  
Author(s):  
Sorcha Bolton ◽  
Oliver J. Robinson

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Daniela Lichtman ◽  
Eyal Bergmann ◽  
Alexandra Kavushansky ◽  
Nadav Cohen ◽  
Nina S. Levy ◽  
...  

AbstractIQSEC2 is an X-linked gene that is associated with autism spectrum disorder (ASD), intellectual disability, and epilepsy. IQSEC2 is a postsynaptic density protein, localized on excitatory synapses as part of the NMDA receptor complex and is suggested to play a role in AMPA receptor trafficking and mediation of long-term depression. Here, we present brain-wide structural volumetric and functional connectivity characterization in a novel mouse model with a missense mutation in the IQ domain of IQSEC2 (A350V). Using high-resolution structural and functional MRI, we show that animals with the A350V mutation display increased whole-brain volume which was further found to be specific to the cerebral cortex and hippocampus. Moreover, using a data-driven approach we identify putative alterations in structure–function relations of the frontal, auditory, and visual networks in A350V mice. Examination of these alterations revealed an increase in functional connectivity between the anterior cingulate cortex and the dorsomedial striatum. We also show that corticostriatal functional connectivity is correlated with individual variability in social behavior only in A350V mice, as assessed using the three-chamber social preference test. Our results at the systems-level bridge the impact of previously reported changes in AMPA receptor trafficking to network-level disruption and impaired social behavior. Further, the A350V mouse model recapitulates similarly reported brain-wide changes in other ASD mouse models, with substantially different cellular-level pathologies that nonetheless result in similar brain-wide alterations, suggesting that novel therapeutic approaches in ASD that result in systems-level rescue will be relevant to IQSEC2 mutations.


Author(s):  
Brandon Gunasekera ◽  
Kelly Diederen ◽  
Sagnik Bhattacharyya

Abstract Background Evidence suggests that an overlap exists between the neurobiology of psychotic disorders and the effects of cannabinoids on neurocognitive and neurochemical substrates involved in reward processing. Aims We investigate whether the psychotomimetic effects of delta-9-tetrahydrocannabinol (THC) and the antipsychotic potential of cannabidiol (CBD) are underpinned by their effects on the reward system and dopamine. Methods This narrative review focuses on the overlap between altered dopamine signalling and reward processing induced by cannabinoids, pre-clinically and in humans. A systematic search was conducted of acute cannabinoid drug-challenge studies using neuroimaging in healthy subjects and those with psychosis Results There is evidence of increased striatal presynaptic dopamine synthesis and release in psychosis, as well as abnormal engagement of the striatum during reward processing. Although, acute THC challenges have elicited a modest effect on striatal dopamine, cannabis users generally indicate impaired presynaptic dopaminergic function. Functional MRI studies have identified that a single dose of THC may modulate regions involved in reward and salience processing such as the striatum, midbrain, insular, and anterior cingulate, with some effects correlating with the severity of THC-induced psychotic symptoms. CBD may modulate brain regions involved in reward/salience processing in an opposite direction to that of THC. Conclusions There is evidence to suggest modulation of reward processing and its neural substrates by THC and CBD. Whether such effects underlie the psychotomimetic/antipsychotic effects of these cannabinoids remains unclear. Future research should address these unanswered questions to understand the relationship between endocannabinoid dysfunction, reward processing abnormalities, and psychosis.


2000 ◽  
Vol 12 (2) ◽  
pp. 267-280 ◽  
Author(s):  
Tetsuya Iidaka ◽  
Nicole D. Anderson ◽  
Shitij Kapur ◽  
Roberto Cabez ◽  
Fergus I. M. Craik

The effects of divided attention (DA) on episodic memory encoding and retrieval were investigated in 12 normal young subjects by positron emission tomography (PET). Cerebral blood flow was measured while subjects were concurrently performing a memory task (encoding and retrieval of visually presented word pairs) and an auditory tone-discrimination task. The PET data were analyzed using multivariate Partial Least Squares (PLS), and the results revealed three sets of neural correlates related to specific task contrasts. Brain activity, relatively greater under conditions of full attention (FA) than DA, was identified in the occipital-temporal, medial, and ventral-frontal areas, whereas areas showing relatively more activity under DA than FA were found in the cerebellum, temporo-parietal, left anterior-cingulate gyrus, and bilateral dorsolateral-prefrontal areas. Regions more active during encoding than during retrieval were located in the hippocampus, temporal and the prefrontal cortex of the left hemisphere, and regions more active during retrieval than during encoding included areas in the medial and right-prefrontal cortex, basal ganglia, thalamus, and cuneus. DA at encoding was associated with specific decreases in rCBF in the left-prefrontal areas, whereas DA at retrieval was associated with decreased rCBF in a relatively small region in the right-prefrontal cortex. These different patterns of activity are related to the behavioral results, which showed a substantial decrease in memory performance when the DA task was performed at encoding, but no change in memory levels when the DA task was performed at retrieval.


2014 ◽  
Vol 26 (9) ◽  
pp. 1992-2004 ◽  
Author(s):  
Jasmin Cloutier ◽  
Tianyi Li ◽  
Joshua Correll

Given the well-documented involvement of the amygdala in race perception, the current study aimed to investigate how interracial contact during childhood shapes amygdala response to racial outgroup members in adulthood. Of particular interest was the impact of childhood experience on amygdala response to familiar, compared with novel, Black faces. Controlling for a number of well-established individual difference measures related to interracial attitudes, the results reveal that perceivers with greater childhood exposure to racial outgroup members display greater relative reduction in amygdala response to familiar Black faces. The implications of such findings are discussed in the context of previous investigations into the neural substrates of race perception and in consideration of potential mechanisms by which childhood experience may shape race perception.


2019 ◽  
Vol 11 (1) ◽  
pp. 80-115
Author(s):  
Eva Koderman

Abstract Anxiety is characterized by a sustained state of heightened vigilance due to uncertain danger, producing increased attention to a perceived threat in one's environment. To further examine this exploited the temporal resolution afforded by event-related potentials to investigate the impact of predictability of threat on early perceptual activity. We recruited 28 participants and utilized a within-subject design to examine hypervigilance in anticipation of shock, unpleasant picture and unpleasant sound during a task with unpredictable, predictable and no threat. We investigated if habituation to stimuli was present by asking the participants to rate unpleasantness and intensity of the stimuli before and after the experiment. We observed hypervigilance in the unpredictable threat of shock. Habituation was observed for the visual stimuli. The present study suggests that unpredictability enhances attentional engagement with neutral somatosensory stimuli when the threat is of the same modality, meaning we observed the presence of hypervigilance which is a characteristic of anxiety.


2019 ◽  
Author(s):  
Solange Denervaud ◽  
Jean-François Knebel ◽  
Emeline Mullier ◽  
Patric Hagmann ◽  
Micah M. Murray

Within an inherently dynamic environment, unexpected outcomes are part of daily life. Performance monitoring allows us to detect these events and adjust behavior accordingly. The necessity of such an optimal functioning has made error-monitoring a prominent topic of research over the last decades. Event-related potentials (ERPs) have differentiated between two brain components involved in error-monitoring: the error-related negativity (ERN) and error-related positivity (Pe) that are thought to reflect detection vs. emotional/motivational processing of errors, respectively. Both ERN and Pe depend on the protracted maturation of the frontal cortices and anterior cingulate through adolescence. To our knowledge, the impact of schooling pedagogy on error-monitoring and its brain mechanisms remains unknown and was the focus of the present study. Swiss schoolchildren completed a continuous recognition task while 64-channel EEG was recorded and later analyzed within an electrical neuroimaging framework. They were enrolled either in a Montessori curriculum (N=13), consisting of self-directed learning through trial-and-error activities with sensory materials, or a traditional curriculum (N=14), focused on externally driven activities mainly based on reward feedback. The two groups were controlled for age, gender, socio-economic status, parental educational style, and scores of fluid intelligence. The ERN was significantly enhanced in Montessori schoolchildren (driven by a larger response to errors), with source estimation differences localized to the cuneus and precuneus. In contrast, the Pe was enhanced in traditional schoolchildren (driven by a larger response to correct trials), with source estimation differences localized to the ventral anterior cingulate. Receiver operating characteristic (ROC) analysis demonstrated that the ERN and Pe could reliably classify if a child was following a Montessori or traditional curriculum. Brain activity subserving error-monitoring is modulated differently according to school pedagogy.


2021 ◽  
Vol 2 ◽  
Author(s):  
Jeremy Viczko ◽  
Jeff Tarrant ◽  
Ray Jackson

Research and design of virtual reality technologies with mental-health focused applications has increased dramatically in recent years. However, the applications and psychological outcomes of augmented reality (AR) technologies still remain to be widely explored and evaluated. This is particularly true for the use of AR for the self-management of stress, anxiety, and mood. In the current study, we examined the impact of a brief open heart meditation AR experience on participants with moderate levels of anxiety and/or depression. Using a randomized between-group design subjects participated in the AR experience or the AR experience plus frontal gamma asymmetry neurofeedback integrated into the experience. Self-reported mood state and resting-state EEG were recorded before and after the AR intervention for both groups. Participants also reported on engagement and perceived use of the experience as a stress and coping tool. EEG activity was analyzed as a function of the frontal, midline, and parietal scalp regions, and with sLORETA current source density estimates of anterior cingulate and insular cortical regions of interest. Results demonstrated that both versions of the AR meditation significantly reduced negative mood and increased positive mood. The changes in resting state EEG were also comparable between groups, with some trending differences observed, in line with existing research on open heart and other loving-kindness and compassion-based meditations. Engagement was favorable for both versions of the AR experience, with higher levels of engagement reported with the addition of neurofeedback. These results provide early support for the therapeutic potential of AR-integrated meditations as a tool for the self-regulation of mood and emotion, and sets the stage for more research and development into health and wellness-promoting AR applications.


2018 ◽  
Vol 31 (6) ◽  
pp. 2533-2545 ◽  
Author(s):  
D. Whittleston ◽  
K. A. McColl ◽  
D. Entekhabi

The impact of future greenhouse gas forcing on the North Atlantic and North Pacific tropospheric jets remains uncertain. Opposing changes in the latitudinal temperature gradient—forced by amplified lower-atmospheric Arctic warming versus upper-atmospheric tropical warming—make robust predictions a challenge. Despite some models simulating more realistic jets than others, it remains the prevailing approach to treat each model as equally probable (i.e., democratic weighting). This study compares democratically weighted projections to an alternative Bayesian-weighting method based on the ability of models to simulate historical wintertime jet climatology. The novel Bayesian technique is developed to be broadly applicable to high-dimensional fields. Results show the Bayesian weighting can reduce systematic bias and suggest the wintertime jet response to greenhouse gas forcing is largely independent of this historical bias (i.e., not state dependent). A future strengthening and narrowing is seen in both winter jets, particularly at the upper levels. The widely reported poleward shift at the level of the eddy-driven jet does not appear statistically robust, particularly over the North Atlantic, indicating sensitivity to current model deficiencies.


Sign in / Sign up

Export Citation Format

Share Document