scholarly journals T182. DIAGNOSIS INDEPENDENT SYNDROME RELATED GRAY MATTER VOLUME CHANGES IN A LARGE TRANSDIAGNOSTIC COHORT: RESULTS FROM THE FOR2107 STUDY

2020 ◽  
Vol 46 (Supplement_1) ◽  
pp. S301-S301
Author(s):  
Frederike Stein ◽  
Gunnar Lemmer ◽  
Simon Schmitt ◽  
Katharina Brosch ◽  
Tina Meller ◽  
...  

Abstract Background More than a century of research on the neurobiological underpinnings of the Major Psychoses (Schizophrenia SZ, Bipolar Disorder BD, Major Depressive Disorder, Schizoaffective Disorder SZA) has been unable to identify diagnostic “markers”. An alternative approach is to study dimensional psychopathological syndromes that cut across categorical diagnoses. Brain imaging studies on the correlates of syndromes are thus far restricted to one diagnosis, however it is unclear, whether structural brain correlates of syndromes are the same across diagnoses. Previously, we have identified 7 syndromes in n=811 patients suffering from major psychoses, applying a confirmatory factor analysis, including depressed mood, negative symptoms, delusions, formal thought disorders, hallucinations, mania and increased appetite. The aim of the current study was to identify gray matter volume correlates of these syndromes across the major psychoses. Methods We tested the association of the above 7 psychopathological factors with whole brain GMV (voxel-based morphometry) in a sample of n=713 patients meeting DSM-IV criteria for MDD (n=550), BD (n=79), SZ (n=51) and SZA (n=33) (www.for2107.de). T1 weighted brain images were acquired at a 3-Tesla MRI. Images were pre-processed as implemented in the Cat12 (SPM12) toolbox. We performed multiple regression analyses for each factor separately and used the family wise error correction (FWE) to correct for multiple comparisons. Additionally, we tested if local VBM associations were driven by one diagnosis extracting the beta-volumes of the clusters and then comparing the subgroups using ANCOVA. Results The delusion factor was negatively correlated with gray matter volume in the left inferior temporal gyrus/fusiform gyrus (k=138 voxels, x/y/z=-48/-58/-15, t=5.23, p<.05 FWE peak level) and the left amygdala/hippocampus (k=23 voxels, x/y/z=-15/-12/-12, t=4.84, p<.05 FWE peak level). The hallucinatory syndrome was negatively correlated with volume in the right thalamus proper (k=54 voxels, x/y/z=8/-4/-2, t=4.9, p<.05 FWE peak level). Extraction of the beta-volumes revealed no effect of diagnosis (delusions (F (3,708) p=.54; hallucinations (F (3,708) p=.542). Discussion Volume changes underlying psychopathological syndromes are independent of diagnosis. We could confirm previous results from much smaller studies which have restricted themselves to single diagnoses or case control designs. Our findings open a new avenue for neurobiological research of the major psychoses, using syndrome based, dimensional approaches rather than DSM or ICD diagnoses.

Mindfulness ◽  
2021 ◽  
Author(s):  
Ramesh Babu M G ◽  
Rajagopal Kadavigere ◽  
Prakashini Koteshwara ◽  
Brijesh Sathian ◽  
Kiranmai S. Rai

Abstract Objectives Many studies on various meditation types have reported regional gray matter volume changes using voxel-based morphometric analysis of structural MRI, but there are no studies done on structural MRI of Rajyoga meditators. The objective of the present study is to analyze and compare gray matter volume changes of brain regions in meditators and non-meditators and further study the effects of meditation experience on alterations in various brain regions. These regions were then correlated and compared to positive thought scores of participants. Methods Forty participants in each group (closely matched for age, gender, and handedness) were selected after obtaining their informed consent, and voxel-based morphometric analysis was carried out using their structural MRI scans. Results On voxel-wise comparison of the brain scans, meditators were observed to have significantly higher global gray matter volume and significant regional gray matter volume increases in the right superior frontal gyrus, left inferior orbitofrontal cortex, left inferior parietal gyrus, left posterior cerebellum, left middle temporal gyrus, bilateral precuneus, and cuneus. Additionally, long-term meditators particularly had significantly higher positive thinking scores compared to non-meditators. On multiple regression analysis, gray matter volume of the left superior parietal gyrus and left inferior parietal gyrus had a positive association, whereas the left posterior cerebellum had a negative association with hours of meditation experience. With the positive thoughts score, a significant relationship was found in the right superior temporal gyrus in meditators. Conclusions These findings indicate that Rajyoga meditation experience/practice enhances gray matter volume of specific brain regions and positive thoughts.


2021 ◽  
pp. 1-10
Author(s):  
Hidemasa Takao ◽  
Shiori Amemiya ◽  
Osamu Abe ◽  

Background: Scan acceleration techniques, such as parallel imaging, can reduce scan times, but reliability is essential to implement these techniques in neuroimaging. Objective: To evaluate the reproducibility of the longitudinal changes in brain morphology determined by longitudinal voxel-based morphometry (VBM) between non-accelerated and accelerated magnetic resonance images (MRI) in normal aging, mild cognitive impairment (MCI), and Alzheimer’s disease (AD). Methods: Using data from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) 2 database, comprising subjects who underwent non-accelerated and accelerated structural T1-weighted MRI at screening and at a 2-year follow-up on 3.0 T Philips scanners, we examined the reproducibility of longitudinal gray matter volume changes determined by longitudinal VBM processing between non-accelerated and accelerated imaging in 50 healthy elderly subjects, 54 MCI patients, and eight AD patients. Results: The intraclass correlation coefficient (ICC) maps differed among the three groups. The mean ICC was 0.72 overall (healthy elderly, 0.63; MCI, 0.75; AD, 0.63), and the ICC was good to excellent (0.6–1.0) for 81.4%of voxels (healthy elderly, 64.8%; MCI, 85.0%; AD, 65.0%). The differences in image quality (head motion) were not significant (Kruskal–Wallis test, p = 0.18) and the within-subject standard deviations of longitudinal gray matter volume changes were similar among the groups. Conclusion: The results indicate that the reproducibility of longitudinal gray matter volume changes determined by VBM between non-accelerated and accelerated MRI is good to excellent for many regions but may vary between diseases and regions.


2019 ◽  
pp. 135910531986997 ◽  
Author(s):  
Huazhan Yin ◽  
Li Zhang ◽  
Dan Li ◽  
Lu Xiao ◽  
Mei Cheng

This study investigated the neuroanatomical basis of the association between depression/anxiety and sleep quality among 370 college students. The results showed that there was a significant correlation between sleep quality and depression/anxiety. Moreover, mediation results showed that the gray matter volume of the right insula mediated the relationship between depression/anxiety and sleep quality, which suggested that depression/anxiety may affect sleep quality through the right insula volume. These findings confirmed a strong link between sleep quality and depression/anxiety, while highlighting the volumetric variation in the right insula associated with emotional processing, which may play a critical role in improving sleep quality.


2020 ◽  
Author(s):  
Joshua M. Carlson ◽  
Lin Fang

AbstractIn a sample of highly anxious individuals, the relationship between gray matter volume brain morphology and attentional bias to threat was assessed. Participants performed a dot-probe task of attentional bias to threat and gray matter volume was acquired from whole brain structural T1-weighted MRI scans. The results replicate previous findings in unselected samples that elevated attentional bias to threat is linked to greater gray matter volume in the anterior cingulate cortex, middle frontal gyrus, and striatum. In addition, we provide novel evidence that elevated attentional bias to threat is associated with greater gray matter volume in the right posterior parietal cortex, cerebellum, and other distributed regions. Lastly, exploratory analyses provide initial evidence that distinct sub-regions of the right posterior parietal cortex may contribute to attentional bias in a sex-specific manner. Our results illuminate how differences in gray matter volume morphology relate to attentional bias to threat in anxious individuals. This knowledge could inform neurocognitive models of anxiety-related attentional bias to threat and targets of neuroplasticity in anxiety interventions such as attention bias modification.


SLEEP ◽  
2019 ◽  
Vol 42 (12) ◽  
Author(s):  
Ambra Stefani ◽  
Thomas Mitterling ◽  
Anna Heidbreder ◽  
Ruth Steiger ◽  
Christian Kremser ◽  
...  

Abstract Study Objectives Integrated information on brain microstructural integrity and iron storage and its impact on the morphometric profile is not available in restless legs syndrome (RLS). We applied multimodal magnetic resonance imaging (MRI) including diffusion tensor imaging, the transverse relaxation rate (R2*), a marker for iron storage, as well as gray and white matter volume measures to characterize RLS-related MRI signal distribution patterns and to analyze their associations with clinical parameters. Methods Eighty-seven patients with RLS (mean age 51, range 20–72 years; disease duration, mean 13 years, range 1–46 years, of those untreated n = 30) and 87 healthy control subjects, individually matched for age and gender, were investigated with multimodal 3T MRI. Results Volume of the white matter compartment adjacent to the post- and precentral cortex and fractional anisotropy (FA) of the frontopontine tract were both significantly reduced in RLS compared to healthy controls, and these alterations were associated with disease duration (r = 0.25, p = 0.025 and r = 0.23, p = 0.037, respectively). Corresponding gray matter volume increases of the right primary motor cortex in RLS (p < 0.001) were negatively correlated with the right FA signal of the frontopontine tract (r = −0.22; p < 0.05). Iron content evaluated with R2* was reduced in the putamen as well as in temporal and occipital compartments of the RLS cohort compared to the control group (p < 0.01). Conclusions Multimodal MRI identified progressing white matter decline of key somatosensory circuits that may underlie the perception of sensory leg discomfort. Increases of gray matter volume of the premotor cortex are likely to be a consequence of functional neuronal reorganization.


2012 ◽  
Vol 8 (1) ◽  
pp. 34-39 ◽  
Author(s):  
Mei-Kei Leung ◽  
Chetwyn C. H. Chan ◽  
Jing Yin ◽  
Chack-Fan Lee ◽  
Kwok-Fai So ◽  
...  

2020 ◽  
pp. 070674372092782 ◽  
Author(s):  
Kamyar Keramatian ◽  
Wayne Su ◽  
Gayatri Saraf ◽  
Trisha Chakrabarty ◽  
Lakshmi N. Yatham

Objective: It has been proposed that different stages of the bipolar disorder might have distinct neurobiological changes. However, the evidence for this has not been consistent, as the studies in early stages of the illness are limited by small sample sizes. The purpose of this study was to investigate the gray matter volume changes in bipolar patients who recently recovered from their first episode of mania (FEM). Methods: Using a whole-brain voxel-based analysis, we compared the regional gray matter volumes of 61 bipolar patients who have recovered from their FEM in the past 3 months with 43 age- and gender-matched healthy participants. We also performed a series of subgroup analyses to determine the effects of hospitalization during the FEM, history of depressive episodes, and exposure to lithium. Results: No statistically significant difference was found between gray matter volumes of FEM patients and healthy participants, even at a more liberal threshold ( P < 0.001, uncorrected for multiple comparisons). Voxel-based subgroup analyses did not reveal significant gray matter differences except for a trend toward decreased gray matter volume in left lateral occipital cortex ( P < 0.001, uncorrected) in patients with a previous history of depression. Conclusion: This study represents the largest structural neuroimaging investigation of FEM published to date. Early stage of bipolar disorder was not found to be associated with significant gray matter volume changes. Our findings suggest that there might be a window of opportunity for early intervention strategies to prevent or delay neuroprogression in bipolar disorder.


SLEEP ◽  
2020 ◽  
Vol 43 (9) ◽  
Author(s):  
Nicola Neumann ◽  
Martin Lotze ◽  
Martin Domin

Abstract Study Objectives Previous studies were inconsistent with regard to the association of sleep dysfunction on the brain’s gray matter volume (GMV). The current study set out to investigate if there is a moderating effect of sex on the relationship between sleep quality in healthy individuals and GMV. Methods We applied voxel-based morphometry in 1,074 young adults of the “Human Connectome Project.” An analysis of variance with the factors “sleep quality” (good/poor according to the Pittsburgh Sleep Quality Index, cutoff &gt;5) and “sex” (male, female) on GMV was conducted. Additionally, linear relationships between sleep quality and GMV were tested. Results The analysis of variance yielded no main effect for sleep quality, but an interaction between sex and sleep quality for the right superior frontal gyrus. Post hoc t-tests showed that female good sleepers in comparison to female poor sleepers had larger GMV in the right parahippocampal gyrus extending to the right hippocampus (whole-brain family-wise error [FWE]-corrected), as well as smaller GMV in the right inferior parietal lobule (whole-brain FWE-corrected) and the right inferior temporal gyrus (whole brain FWE-corrected). There were no significant effects when comparing male good sleepers to male poor sleepers. Linear regression analyses corroborated smaller GMV in the right parahippocampal gyrus in women with poor sleep quality. Conclusions Poor sleep quality was associated with altered GMV in females, but not in males. Future studies are needed to investigate the neurobiological mechanisms that underlie the sex differences in the association of sleep quality and brain differences found in this study.


Sign in / Sign up

Export Citation Format

Share Document