scholarly journals Pulmonary Evaluation of Permissible Exposure Limit of Syntroleum S-8 Synthetic Jet Fuel in Mice

2009 ◽  
Vol 109 (2) ◽  
pp. 312-320 ◽  
Author(s):  
Simon S. Wong ◽  
Alana Thomas ◽  
Brian Barbaris ◽  
R. Clark Lantz ◽  
Mark L. Witten
Author(s):  
P. Gokulakrishnan ◽  
M. S. Klassen ◽  
R. J. Roby

Ignition delay times of a “real” synthetic jet fuel (S8) were measured using an atmospheric pressure flow reactor facility. Experiments were performed between 900 K and 1200 K at equivalence ratios from 0.5 to 1.5. Ignition delay time measurements were also performed with JP8 fuel for comparison. Liquid fuel was prevaporized to gaseous form in a preheated nitrogen environment before mixing with air in the premixing section, located at the entrance to the test section of the flow reactor. The experimental data show shorter ignition delay times for S8 fuel than for JP8 due to the absence of aromatic components in S8 fuel. However, the ignition delay time measurements indicate higher overall activation energy for S8 fuel than for JP8. A detailed surrogate kinetic model for S8 was developed by validating against the ignition delay times obtained in the present work. The chemical composition of S8 used in the experiments consisted of 99.7 vol% paraffins of which approximately 80 vol% was iso-paraffins and 20% n-paraffins. The detailed kinetic mechanism developed in the current work included n-decane and iso-octane as the surrogate components to model ignition characteristics of synthetic jet fuels. The detailed surrogate kinetic model has approximately 700 species and 2000 reactions. This kinetic mechanism represents a five-component surrogate mixture to model generic kerosene-type jets fuels, namely, n-decane (for n-paraffins), iso-octane (for iso-paraffins), n-propylcyclohexane (for naphthenes), n-propylbenzene (for aromatics) and decene (for olefins). The sensitivity of iso-paraffins on jet fuel ignition delay times was investigated using the detailed kinetic model. The amount of iso-paraffins present in the jet fuel has little effect on the ignition delay times in the high temperature oxidation regime. However, the presence of iso-paraffins in synthetic jet fuels can increase the ignition delay times by two orders of magnitude in the negative temperature (NTC) region between 700 K and 900 K, typical gas turbine conditions. This feature can have a favorable impact on preventing flashback caused by the premature autoignition of liquid fuels in lean premixed prevaporized (LPP) combustion systems.


2009 ◽  
Vol 55 (No. 2) ◽  
pp. 69-75 ◽  
Author(s):  
M. Šístková ◽  
A. Peterka

The noise belongs to the leading harmful factors which pollute the environment and negatively influences human health. An overview measurement concerning the noise characteristics has been done in agricultural service workplaces. The sound pressure level has been measured and the length of the workers exposition has been elicited in each workplace. The obtained data has proved that some agricultural service workers have been exposed to a noise above the permissible exposure limit.


Author(s):  
Philippe Dagaut ◽  
Pascal Diévart

Research on the production and combustion of synthetic jet fuels has recently gained importance because of their potential for addressing security of supply and sustainable air transportation challenges. The combustion of a 100% naphtenic cut that fits with typical chemical composition of products coming from biomass or coal liquefaction (C12.64H23.64; M=175.32 g.mol−1; H/C=1.87; DCN=39; density=863.1 g.L−1) and a 50% vol. mixture with Gas to Liquid from Shell (mixture: C11.54H23.35; M=161.83 g.mol−1; H/C=2.02; DCN=46; density=800.3 g.L−1) were studied in a jetstirred reactor under the same conditions (temperature, 550–1150 K; pressure, 10 bar; equivalence ratio, 0.5, 1, and 2; initial fuel concentration, 1000 ppm). Surrogate model-fuels were designed based on fuel composition and properties for simulating the kinetics of oxidation of these fuels. We used new model-fuels consisting of mixtures of n-decane, decalin, tetralin, 2-methylheptane, 3-methylheptane, n-propyl cyclohexane, and n-propylbenzene. The detailed chemical kinetic reaction mechanism proposed was validated using the entire experimental database obtained in the present work and for the oxidation of pure GtL, we used previous results. Kinetic computations involving reaction paths analyses and sensitivity analyses were used to interpret the results.


Author(s):  
Fredrik Hermann ◽  
Jens Klingmann ◽  
Rolf Gabrielsson ◽  
Jo¨rgen R. Pedersen ◽  
Jim O. Olsson ◽  
...  

A comparative experimental investigation has been performed, comparing the emissions from a synthetic jet fuel and from Jet A1. In the investigation, the unburned hydrocarbons were analyzed chemically and the regulated emissions of NOx, CO and HC were measured. All combustion tests were performed under elevated pressures in a gas turbine combustor rig. A Swedish company, Oroboros AB, has developed a novel clean synthetic jet fuel, LeanJet®. The fuel is produced synthetically from synthesis gas by a Fischer-Tropsch process. Except for the density, the fuel conforms to the Standard Specification for Aviation Turbine Fuels. The low density is due to the lack of aromatics and polyaromatics. Organic emissions from the gas turbine combustor rig were collected by adsorption sampling and analyzed chemically. Both the fuels and the organic emissions were analyzed by gas chromatography/flame ionization (GC/FID) complemented with gas chromatography/mass spectrometry (GC/MS). Under the operating conditions investigated, no significant differences were found for the regulated emissions, except for emission of CO from the synthetic fuel, which, at leaner conditions, was one-quarter of that measured for Jet A1. Detailed analysis of the organic compounds showed that the emissions from both fuels were dominated by fuel alkanes and a significant amount of naphthalene. It was also found that Jet A1 produced a much higher amount of benzene than the synthetic fuel.


2014 ◽  
Vol 14 (11) ◽  
pp. 5771-5780 ◽  
Author(s):  
S. H. Jathar ◽  
N. M. Donahue ◽  
P. J. Adams ◽  
A. L. Robinson

Abstract. We use secondary organic aerosol (SOA) production data from an ensemble of unburned fuels measured in a smog chamber to test various SOA formation models. The evaluation considered data from 11 different fuels including gasoline, multiple diesels, and various jet fuels. The fuels are complex mixtures of species; they span a wide range of volatility and molecular structure to provide a challenging test for the SOA models. We evaluated three different versions of the SOA model used in the Community Multiscale Air Quality (CMAQ) model. The simplest and most widely used version of that model only accounts for the volatile species (species with less than or equal to 12 carbons) in the fuels. It had very little skill in predicting the observed SOA formation (R2 = 0.04, fractional error = 108%). Incorporating all of the lower-volatility fuel species (species with more than 12 carbons) into the standard CMAQ SOA model did not improve model performance significantly. Both versions of the CMAQ SOA model over-predicted SOA formation from a synthetic jet fuel and under-predicted SOA formation from diesels because of an overly simplistic representation of the SOA formation from alkanes that did not account for the effects of molecular size and structure. An extended version of the CMAQ SOA model that accounted for all organics and the influence of molecular size and structure of alkanes reproduced the experimental data. This underscores the importance of accounting for all low-volatility organics and information on alkane molecular size and structure in SOA models. We also investigated fitting an SOA model based solely on the volatility of the precursor mixture to the experimental data. This model could describe the observed SOA formation with relatively few free parameters, demonstrating the importance of precursor volatility for SOA formation. The exceptions were exotic fuels such as synthetic jet fuel that expose the central assumption of the volatility-dependent model that most emissions consist of complex mixtures with similar distribution of molecular classes. Despite its shortcomings, SOA formation as a function of volatility may be sufficient for modeling SOA formation in chemical transport models.


2008 ◽  
Vol 47 (6) ◽  
pp. 1828-1834 ◽  
Author(s):  
Tebogo M. Sakuneka ◽  
Arno de Klerk ◽  
Reinier J. J. Nel ◽  
Andrew D. Pienaar

Sign in / Sign up

Export Citation Format

Share Document