scholarly journals Comparative genomic analysis of genogroup 1 and genogroup 2 rotaviruses circulating in seven US cities, 2014-2016

2021 ◽  
Author(s):  
Mathew D Esona ◽  
Rashi Gautam ◽  
Eric Katz ◽  
Jose Jaime ◽  
M Leanne Ward ◽  
...  

Abstract For over a decade, the New Vaccine Surveillance Network (NVSN) has conducted active RVA strain surveillance in the USA. The evolution of RVA in the post-vaccine introduction era and the possible effects of vaccine pressure on contemporary circulating strains in the USA are still under investigation. Here we report the whole-gene characterization (11 ORFs) for 157 RVA strains collected at 7 NVSN sites during the 2014 through 2016 seasons. The sequenced strains included 52 G1P[8], 47 G12P[8], 18 G9P[8], 24 G2P[4], 5 G3P[6], as well as 7 vaccine strains, a single mixed strain (G9G12P[8]), and 3 less common strains. The majority of the single and mixed strains possessed a Wa-like backbone with consensus genotype constellation of G1/G3/G9/G12-P[8]-I1-R1-C1-M1-A1-N1-T1-E1-H1, while the G2P[4], G3P[6], and G2P[8] strains displayed a DS-1-like genetic backbone with consensus constellation of G2/G3-P[4]/P[6]/P[8]-I2-R2-C2-M2-A2-N2-T2-E2-H2. Two intergenogroup reassortant G1P[8] strains were detected that appear to be progenies of reassortment events between Wa-like G1P[8] and DS-1-like G2P[4] strains. Two Rotarix® vaccine (RV1) and two RV5 derived (vd) reassortant strains were detected. Phylogenetic and similarity matrices analysis revealed 2-11 sub-genotypic allelic clusters among the genes of Wa- and DS-1-like strains. Most study strains clustered into previously defined alleles. Amino acid (AA) substitutions occurring in the neutralization epitopes of the VP7 and VP4 proteins characterized in this study were mostly neutral in nature, suggesting that these RVA proteins were possibly under strong negative or purifying selection in order to maintain competent and actual functionality, but 14 radical (AA changes that occur between groups) AA substitutions were noted that may allow RVA strains to gain a selective advantage through immune escape. The tracking of RVA strains at the sub-genotypic allele constellation level will enhance our understanding of RVA evolution under vaccine pressure, help identify possible mechanisms of immune escape, and provide valuable information for formulation of future RVA vaccines.

2014 ◽  
Vol 28 ◽  
pp. 513-523 ◽  
Author(s):  
Sunando Roy ◽  
Mathew D. Esona ◽  
Ewen F. Kirkness ◽  
Asmik Akopov ◽  
J. Kyle McAllen ◽  
...  

2021 ◽  
Author(s):  
Debasis Nayak ◽  
Basanta Sahu ◽  
Prativa Majee ◽  
Ravi Singh ◽  
Niranjan Sahoo

Abstract Contagious pustular dermatitis is a disease that primarily infects small ruminants and has the zoonotic potential evoked by a Parapoxvirus, Orf virus (ORFV). This study evaluated an ORFV outbreak in goats that arose in Madhya Pradesh, a state of central India, during 2017 by constructing phylogenetic trees and unveiling its transboundary potential. Thereafter, the complete genome of an ORFV strain named Ind/MP has revealed the presence of 139,807bp nucleotide sequences, GC content 63.7%, 132 open reading frames (ORFs) circumscribed by inverted terminal repeats (ITRs) of 3,910bp. Evolutionary parameters such as selection pressure (θ=dN/dS), nucleotide diversity (π), etc., demonstrate the ORFV exhibit purifying selection. A total of forty recombination events were observed, out of which Ind/MP strains were engaged in twenty-one recombination events indicating this strain can recombine for the generation of new variants.


2018 ◽  
Vol 85 (2) ◽  
Author(s):  
Liangzhi Li ◽  
Zhenghua Liu ◽  
Delong Meng ◽  
Xueduan Liu ◽  
Xing Li ◽  
...  

ABSTRACTMembers of the genusAcidithiobacillus, which can adapt to extremely high concentrations of heavy metals, are universally found at acid mine drainage (AMD) sites. Here, we performed a comparative genomic analysis of 37 strains within the genusAcidithiobacillusto answer the untouched questions as to the mechanisms and the evolutionary history of metal resistance genes inAcidithiobacillusspp. The results showed that the evolutionary history of metal resistance genes inAcidithiobacillusspp. involved a combination of gene gains and losses, horizontal gene transfer (HGT), and gene duplication. Phylogenetic analyses revealed that metal resistance genes inAcidithiobacillusspp. were acquired by early HGT events from species that shared habitats withAcidithiobacillusspp., such asAcidihalobacter,Thiobacillus,Acidiferrobacter, andThiomonasspecies. Multicopper oxidase genes involved in copper detoxification were lost in iron-oxidizingAcidithiobacillus ferridurans,Acidithiobacillus ferrivorans, andAcidithiobacillus ferrooxidansand were replaced by rusticyanin genes during evolution. In addition, widespread purifying selection and the predicted high expression levels emphasized the indispensable roles of metal resistance genes in the ability ofAcidithiobacillusspp. to adapt to harsh environments. Altogether, the results suggested thatAcidithiobacillusspp. recruited and consolidated additional novel functionalities during the adaption to challenging environments via HGT, gene duplication, and purifying selection. This study sheds light on the distribution, organization, functionality, and complex evolutionary history of metal resistance genes inAcidithiobacillusspp.IMPORTANCEHorizontal gene transfer (HGT), natural selection, and gene duplication are three main engines that drive the adaptive evolution of microbial genomes. Previous studies indicated that HGT was a main adaptive mechanism in acidophiles to cope with heavy-metal-rich environments. However, evidences of HGT inAcidithiobacillusspecies in response to challenging metal-rich environments and the mechanisms addressing how metal resistance genes originated and evolved inAcidithiobacillusare still lacking. The findings of this study revealed a fascinating phenomenon of putative cross-phylum HGT, suggesting thatAcidithiobacillusspp. recruited and consolidated additional novel functionalities during the adaption to challenging environments via HGT, gene duplication, and purifying selection. Altogether, the insights gained in this study have improved our understanding of the metal resistance strategies ofAcidithiobacillusspp.


Author(s):  
Roshan Kumar ◽  
Helianthous Verma ◽  
Nirjara Singhvi ◽  
Utkarsh Sood ◽  
Vipin Gupta ◽  
...  

AbstractThe Coronavirus Disease-2019 (COVID-19) that started in Wuhan, China in December 2019 has spread worldwide emerging as a global pandemic. The severe respiratory pneumonia caused by the novel SARS-CoV-2 has so far claimed more than 60,000 lives and has impacted human lives worldwide. However, as the novel SARS-CoV-2 displays high transmission rates, their underlying genomic severity is required to be fully understood. We studied the complete genomes of 95 SARS-CoV-2 strains from different geographical regions worldwide to uncover the pattern of the spread of the virus. We show that there is no direct transmission pattern of the virus among neighboring countries suggesting that the outbreak is a result of travel of infected humans to different countries. We revealed unique single nucleotide polymorphisms (SNPs) in nsp13-16 (ORF1b polyprotein) and S-Protein within 10 viral isolates from the USA. These viral proteins are involved in RNA replication, indicating highly evolved viral strains circulating in the population of USA than other countries. Furthermore, we found an amino acid addition in nsp16 (mRNA cap-1 methyltransferase) of the USA isolate (MT188341) leading to shift in amino acid frame from position 2540 onwards. Through the construction of SARS-CoV-2-human interactome, we further revealed that multiple host proteins (PHB, PPP1CA, TGF-β, SOCS3, STAT3, JAK1/2, SMAD3, BCL2, CAV1 & SPECC1) are manipulated by the viral proteins (nsp2, PL-PRO, N-protein, ORF7a, M-S-ORF3a complex, nsp7-nsp8-nsp9-RdRp complex) for mediating host immune evasion. Thus, the replicative machinery of SARS-CoV-2 is fast evolving to evade host challenges which need to be considered for developing effective treatment strategies.


2016 ◽  
Vol 21 (2) ◽  
Author(s):  
Daniel Hungerford ◽  
Roberto Vivancos ◽  

The EuroRotaNet surveillance network has conducted rotavirus genotype surveillance since 2007 in 16 European countries. Using epidemiological and microbiological data from 39,786 genotyped rotavirus-positive specimens collected between September 2007 and August 2013, we assessed genotype distribution and age distribution of rotavirus gastroenteritis (RVGE) cases in and out of peak season in 12 countries which were yet to implement routine rotavirus vaccination. In multinomial multivariate logistic regression, adjusting for year, country and age, the odds of infection caused by genotype-constellation 2 DS-1-like stains (adjusted multinomial odds ratio (aM-OR) = 1.25; 95% confidence interval (CI): 1.13–1.37; p < 0.001), mixed or untypable genotypes (aM-OR = 1.55; 95% CI: 1.40–1.72; p < 0.001) and less common genotypes (aM-OR = 2.11; 95% CI:1.78–2.51; p < 0.001) increased out of season relative to G1P[8]. Age varied significantly between seasons; the proportion of RVGE cases younger than 12 months in the United Kingdom increased from 34% in season to 39% out of season (aM-OR = 1.66; 95% CI: 1.20–2.30), and the proportion five years and older increased from 9% in season to 17% out of season (aM-OR = 2.53; 95% CI: 1.67–3.82). This study provides further understanding of the rotavirus ecology before vaccine introduction, which will help interpret epidemiological changes in countries introducing or expanding rotavirus vaccination programmes.


2020 ◽  
Vol 21 (11) ◽  
pp. 3758 ◽  
Author(s):  
Zhou Hong ◽  
Zhiqiang Wu ◽  
Kunkun Zhao ◽  
Zengjiang Yang ◽  
Ningnan Zhang ◽  
...  

Pterocarpus is a genus of trees mainly distributed in tropical Asia, Africa, and South America. Some species of Pterocarpus are rosewood tree species, having important economic value for timber, and for some species, medicinal value as well. Up to now, information about this genus with regard to the genomic characteristics of the chloroplasts has been limited. Based on a combination of next-generation sequencing (Illumina Hiseq) and long-read sequencing (PacBio), the whole chloroplast genomes (cp genomes) of five species (rosewoods) in Pterocarpus (Pterocarpus macrocarpus, P. santalinus, P. indicus, P. pedatus, P. marsupium) have been assembled. The cp genomes of five species in Pterocarpus have similar structural characteristics, gene content, and sequence to other flowering plants. The cp genomes have a typical four-part structure, containing 110 unique genes (77 protein coding genes, 4 rRNAs, 29 tRNAs). Through comparative genomic analysis, abundant simple sequence repeat (SSR)loci (333–349) were detected in Pterocarpus, among which A /T single nucleotide repeats accounted for the highest proportion (72.8–76.4%). In the five cp genomes of Pterocarpus, eight hypervariable regions, including trnH-GUG_psbA, trnS-UGA_psbC, accD-psaI, ndhI-exon2_ndhI-exon1, ndhG_ndhi-exon2, rpoC2-exon2, ccsA, and trnfM-CAU, are proposed for use as DNA barcode regions. In the comparison of gene selection pressures (P. santalinus as the reference genome), purifying selection was inferred as the primary mode of selection in maintaining important biological functions. Phylogenetic analysis shows that Pterocarpus is a monophyletic group. The species P. tinctorius is resolved as early diverging in the genus. Pterocarpus was resolved as sister to the genus Tipuana.


2019 ◽  
Author(s):  
Valeria Lulla ◽  
Andrew E. Firth

ABSTRACTHuman astroviruses are small nonenveloped viruses with positive-sense single-stranded RNA genomes that contain three main open reading frames: ORF1a, ORF1b and ORF2. Astroviruses cause acute gastroenteritis in children worldwide and have been associated with encephalitis and meningitis in immunocompromised individuals. Through comparative genomic analysis of >400 astrovirus sequences, we identified a conserved “ORFX” overlapping the capsid-encoding ORF2 in genogroup I, III and IV astroviruses. ORFX appears to be subject to purifying selection, consistent with it encoding a functional protein product, termed XP. Using ribosome profiling of cells infected with human astrovirus 1, we confirm initiation at the ORFX AUG. XP-knockout astroviruses are strongly attenuated and after passaging can partly restore viral titer via pseudo-reversions, thus demonstrating that XP plays an important role in virus growth. To further investigate XP, we developed an astrovirus replicon system. We demonstrate that XP has only minor effects on RNA replication and structural protein production. Instead, XP associates with the plasma membrane with an extracellular N-terminus topology and promotes efficient virus release. Using two different assays, we show that expression of human or related astrovirus XPs leads to cell permeabilization, suggesting a viroporin-like activity. The discovery of XP advances our knowledge of these important human viruses and opens a new direction of research into astrovirus replication and pathogenesis.


BMC Genomics ◽  
2020 ◽  
Vol 21 (1) ◽  
Author(s):  
Chun-Ji Li ◽  
Die Zhao ◽  
Ping Cheng ◽  
Li Zheng ◽  
Guo-Hui Yu

Abstract Background Rhodotorula glutinis is recognized as a biotechnologically important oleaginous red yeast, which synthesizes numerous meritorious compounds with wide industrial usages. One of the most notable properties of R. glutinis is the formation of intracellular lipid droplets full of carotenoids. However, the basic genomic features that underlie the biosynthesis of these valuable compounds in R. glutinis have not been fully documented. To reveal the biotechnological potential of R. glutinis, the genomics and lipidomics analysis was performed through the Next-Generation Sequencing and HPLC-MS-based metabolomics technologies. Results Here, we firstly assemble the genome of R. glutinis ZHK into 21.8 Mb, containing 30 scaffolds and 6774 predicted genes with a N50 length of 14, 66,672 bp and GC content of 67.8%. Genome completeness assessment (BUSCO alignment: 95.3%) indicated the genome assembly with a high-quality features. According to the functional annotation of the genome, we predicted several key genes involved in lipids and carotenoids metabolism as well as certain industrial enzymes biosynthesis. Comparative genomics results suggested that most of orthologous genes have underwent the strong purifying selection within the five Rhodotorula species, especially genes responsible for carotenoids biosynthesis. Furthermore, a total of 982 lipids were identified using the lipidomics approaches, mainly including triacylglycerols, diacylglyceryltrimethylhomo-ser and phosphatidylethanolamine. Conclusion Using whole genome shotgun sequencing, we comprehensively analyzed the genome of R. glutinis and predicted several key genes involved in lipids and carotenoids metabolism. By performing comparative genomic analysis, we show that most of the ortholog genes have undergone strong purifying selection within the five Rhodotorula species. Furthermore, we identified 982 lipid species using lipidomic approaches. These results provided valuable resources to further advance biotechnological applications of R .glutinis.


Author(s):  
Yi Liao ◽  
Xinwen Zhang ◽  
Mahul Chakraborty ◽  
J.J. Emerson

Topologically associating domains (TADs) were recently identified as fundamental units of three-dimensional eukaryotic genomic organization, though our knowledge of the influence of TADs on genome evolution remains preliminary. To study the molecular evolution of TADs in Drosophila species, we constructed a new reference-grade genome assembly and accompanying high-resolution TAD map for D. pseudoobscura. Comparison of D. pseudoobscura and D. melanogaster, which are separated by ~49 million years of divergence, showed that ~30-40% of their genomes retain conserved TADs. Comparative genomic analysis of 17 Drosophila species revealed that chromosomal rearrangement breakpoints are enriched at TAD boundaries but depleted within TADs. Additionally, genes within conserved TADs exhibit lower expression divergence than those located in nonconserved TADs. Furthermore, we found that a substantial proportion of long genes (>50 kbp) in D. melanogaster (42%) and D. pseudoobscura (26%) constitute their own TADs, implying transcript structure may be one of the deterministic factors for TAD formation. Using structural variants (SVs) identified from 14 D. melanogaster strains, its 3 closest sibling species from the D. simulans species complex, and two obscura clade species, we uncovered evidence of selection acting on SVs at TAD boundaries, but with the nature of selection differing between SV types. Deletions are depleted at TAD boundaries in both divergent and polymorphic SVs, suggesting purifying selection, whereas divergent tandem duplications are enriched at TAD boundaries relative to polymorphism, suggesting they are adaptive. Our findings highlight how important TADs are in shaping the acquisition and retention of structural mutations that fundamentally alter genome organization.


Sign in / Sign up

Export Citation Format

Share Document