scholarly journals Recombination Drives Emergence of Orf Virus Diversity: Evidence From the First Complete Genome of Indian Orf Virus and Comparative Genomic Analysis

Author(s):  
Debasis Nayak ◽  
Basanta Sahu ◽  
Prativa Majee ◽  
Ravi Singh ◽  
Niranjan Sahoo

Abstract Contagious pustular dermatitis is a disease that primarily infects small ruminants and has the zoonotic potential evoked by a Parapoxvirus, Orf virus (ORFV). This study evaluated an ORFV outbreak in goats that arose in Madhya Pradesh, a state of central India, during 2017 by constructing phylogenetic trees and unveiling its transboundary potential. Thereafter, the complete genome of an ORFV strain named Ind/MP has revealed the presence of 139,807bp nucleotide sequences, GC content 63.7%, 132 open reading frames (ORFs) circumscribed by inverted terminal repeats (ITRs) of 3,910bp. Evolutionary parameters such as selection pressure (θ=dN/dS), nucleotide diversity (π), etc., demonstrate the ORFV exhibit purifying selection. A total of forty recombination events were observed, out of which Ind/MP strains were engaged in twenty-one recombination events indicating this strain can recombine for the generation of new variants.

2021 ◽  
Vol 53 (4) ◽  
Author(s):  
Jean N. Hakizimana ◽  
Jean B. Ntirandekura ◽  
Clara Yona ◽  
Lionel Nyabongo ◽  
Gladson Kamwendo ◽  
...  

AbstractSeveral African swine fever (ASF) outbreaks in domestic pigs have been reported in Burundi and Malawi and whole-genome sequences of circulating outbreak viruses in these countries are limited. In the present study, complete genome sequences of ASF viruses (ASFV) that caused the 2018 outbreak in Burundi (BUR/18/Rutana) and the 2019 outbreak in Malawi (MAL/19/Karonga) were produced using Illumina next-generation sequencing (NGS) platform and compared with other previously described ASFV complete genomes. The complete nucleotide sequences of BUR/18/Rutana and MAL/19/Karonga were 176,564 and 183,325 base pairs long with GC content of 38.62 and 38.48%, respectively. The MAL/19/Karonga virus had a total of 186 open reading frames (ORFs) while the BUR/18/Rutana strain had 151 ORFs. After comparative genomic analysis, the MAL/19/Karonga virus showed greater than 99% nucleotide identity with other complete nucleotides sequences of p72 genotype II viruses previously described in Tanzania, Europe and Asia including the Georgia 2007/1 isolate. The Burundian ASFV BUR/18/Rutana exhibited 98.95 to 99.34% nucleotide identity with genotype X ASFV previously described in Kenya and in Democratic Republic of the Congo (DRC). The serotyping results classified the BUR/18/Rutana and MAL/19/Karonga ASFV strains in serogroups 7 and 8, respectively. The results of this study provide insight into the genetic structure and antigenic diversity of ASFV strains circulating in Burundi and Malawi. This is important in order to understand the transmission dynamics and genetic evolution of ASFV in eastern Africa, with an ultimate goal of designing an efficient risk management strategy against ASF transboundary spread.


BMC Genomics ◽  
2020 ◽  
Vol 21 (1) ◽  
Author(s):  
Chun-Ji Li ◽  
Die Zhao ◽  
Ping Cheng ◽  
Li Zheng ◽  
Guo-Hui Yu

Abstract Background Rhodotorula glutinis is recognized as a biotechnologically important oleaginous red yeast, which synthesizes numerous meritorious compounds with wide industrial usages. One of the most notable properties of R. glutinis is the formation of intracellular lipid droplets full of carotenoids. However, the basic genomic features that underlie the biosynthesis of these valuable compounds in R. glutinis have not been fully documented. To reveal the biotechnological potential of R. glutinis, the genomics and lipidomics analysis was performed through the Next-Generation Sequencing and HPLC-MS-based metabolomics technologies. Results Here, we firstly assemble the genome of R. glutinis ZHK into 21.8 Mb, containing 30 scaffolds and 6774 predicted genes with a N50 length of 14, 66,672 bp and GC content of 67.8%. Genome completeness assessment (BUSCO alignment: 95.3%) indicated the genome assembly with a high-quality features. According to the functional annotation of the genome, we predicted several key genes involved in lipids and carotenoids metabolism as well as certain industrial enzymes biosynthesis. Comparative genomics results suggested that most of orthologous genes have underwent the strong purifying selection within the five Rhodotorula species, especially genes responsible for carotenoids biosynthesis. Furthermore, a total of 982 lipids were identified using the lipidomics approaches, mainly including triacylglycerols, diacylglyceryltrimethylhomo-ser and phosphatidylethanolamine. Conclusion Using whole genome shotgun sequencing, we comprehensively analyzed the genome of R. glutinis and predicted several key genes involved in lipids and carotenoids metabolism. By performing comparative genomic analysis, we show that most of the ortholog genes have undergone strong purifying selection within the five Rhodotorula species. Furthermore, we identified 982 lipid species using lipidomic approaches. These results provided valuable resources to further advance biotechnological applications of R .glutinis.


2021 ◽  
Vol 10 (46) ◽  
Author(s):  
Kentaro Miyazaki ◽  
Natsuko Tokito

Complete genome resequencing was conducted for Thermus thermophilus strain TMY by hybrid assembly of Oxford Nanopore Technologies long-read and MGI short-read data. Errors in the previously reported genome sequence determined by PacBio technology alone were corrected, allowing for high-quality comparative genomic analysis of closely related T. thermophilus genomes.


2019 ◽  
Vol 87 (10) ◽  
Author(s):  
Tracy H. Hazen ◽  
David A. Rasko

ABSTRACT Enteropathogenic Escherichia coli (EPEC) is a leading cause of moderate to severe diarrhea among young children in developing countries, and EPEC isolates can be subdivided into two groups. Typical EPEC (tEPEC) bacteria are characterized by the presence of both the locus of enterocyte effacement (LEE) and the plasmid-encoded bundle-forming pilus (BFP), which are involved in adherence and translocation of type III effectors into the host cells. Atypical EPEC (aEPEC) bacteria also contain the LEE but lack the BFP. In the current report, we describe the complete genome of outbreak-associated aEPEC isolate E110019, which carries four plasmids. Comparative genomic analysis demonstrated that the type III secreted effector EspT gene, an autotransporter gene, a hemolysin gene, and putative fimbrial genes are all carried on plasmids. Further investigation of 65 espT-containing E. coli genomes demonstrated that different espT alleles are associated with multiple plasmids that differ in their overall gene content from the E110019 espT-containing plasmid. EspT has been previously described with respect to its role in the ability of E110019 to invade host cells. While other type III secreted effectors of E. coli have been identified on insertion elements and prophages of the chromosome, we demonstrated in the current study that the espT gene is located on multiple unique plasmids. These findings highlight a role of plasmids in dissemination of a unique E. coli type III secreted effector that is involved in host invasion and severe diarrheal illness.


2012 ◽  
Vol 78 (7) ◽  
pp. 2264-2271 ◽  
Author(s):  
Allan L. Delisle ◽  
Ming Guo ◽  
Natalia I. Chalmers ◽  
Gerard J. Barcak ◽  
Geneviève M. Rousseau ◽  
...  

ABSTRACTM102AD is the new designation for aStreptococcus mutansphage described in 1993 as phage M102. This change was necessitated by the genome analysis of anotherS. mutansphage named M102, which revealed differences from the genome sequence reported here. Additional host range analyses confirmed thatS. mutansphage M102AD infects only a few serotype c strains. Phage M102AD adsorbed very slowly to its host, and it cannot adsorb to serotype e and f strains ofS. mutans. M102AD adsorption was blocked by c-specific antiserum. Phage M102AD also adsorbed equally well to heat-treated and trypsin-treated cells, suggesting carbohydrate receptors. Saliva and polysaccharide production did not inhibit plaque formation. The genome of this siphophage consisted of a linear, double-stranded, 30,664-bp DNA molecule, with a GC content of 39.6%. Analysis of the genome extremities indicated the presence of a 3′-overhangcossite that was 11 nucleotides long. Bioinformatic analyses identified 40 open reading frames, all in the same orientation. No lysogeny-related genes were found, indicating that phage M102AD is strictly virulent. No obvious virulence factor gene candidates were found. Twelve proteins were identified in the virion structure by mass spectrometry. Comparative genomic analysis revealed a close relationship betweenS. mutansphages M102AD and M102 as well as withStreptococcus thermophilusphages. This study also highlights the importance of conducting research with biological materials obtained from recognized microbial collections.


2021 ◽  
Author(s):  
Jiaxin Yang ◽  
Guoxiong Hu ◽  
Guangwan Hu

Abstract Background Handeliodendron Rehder and Eurycorymbus Hand.-Mazz. are the monotypic genera in the Sapindaceae family. The phylogenetic relationship of these endangered species Handeliodendron bodinieri (Lévl.) Rehd. and Eurycorymbus cavaleriei (Lévl.) Rehd. et Hand.-Mazz. with other members of Sapindaceae s.l. is not well resolved. A previous study concluded that the genus Aesculus might be paraphyletic because Handeliodendron was nested within it based on small DNA fragments. Thus, their chloroplast genomic information and comparative genomic analysis with other Sapindaceae species are necessary and crucial to understand the circumscription and plastome evolution of this family. Results The chloroplast genome sizes of Handeliodendron bodinieri and Eurycorymbus cavaleriei are 151,271 and 158,690 bp, respectively. Results showed that a total of 114 unique genes were annotated in H. bodinieri and E. cavaleriei, and the ycf1 gene contained abundant SSRs in both genomes. Comparative analysis revealed that gene content, PCGs, and total GC content were remarkably similar or identical within 13 genera from Sapindaceae, and the chloroplast genome size of four genera was generally smaller within the family, including Acer, Dipteronia, Aesculus, and Handeliodendron. IR boundaries of the H. bodinieri showed a significant contraction, whereas it presented a notable expansion in E. cavaleriei cp genome. Ycf1, ndhC-trnV-UAC, and rpl32-trnL-UAG-ccsA were remarkably divergent regions in the Sapindaceae species. Phylogenetic analysis based on different datasets, including whole chloroplast genome sequences, coding sequences, large single-copy, small single-copy, and inverted repeat regions, consistently demonstrated that H. bodinieri was sister to the clade consisted of Aesculus chinensis and A. wangii, strongly support Eurycorymbus cavaleriei as sister to Dodonaea viscosa. Conclusion This study revealed that the cp genome size of the Hippocastanoideae was generally smaller across Sapindaceae, and three highly divergent regions could be used as the specific DNA barcodes within Sapindaceae. Phylogenetic results strongly support that the subdivision of four subfamilies within Sapindaceae, and Handeliodendron is not nested within the genus Aesculus.


Insects ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 754
Author(s):  
Yupeng Wu ◽  
Hui Fang ◽  
Jiping Wen ◽  
Juping Wang ◽  
Tianwen Cao ◽  
...  

In this study, the complete mitochondrial genomes (mitogenomes) of Hestina persimilis and Hestinalis nama (Nymphalidae: Apaturinae)were acquired. The mitogenomes of H. persimilis and H. nama are 15,252 bp and 15,208 bp in length, respectively. These two mitogenomes have the typical composition, including 37 genes and a control region. The start codons of the protein-coding genes (PCGs) in the two mitogenomes are the typical codon pattern ATN, exceptCGA in the cox1 gene. Twenty-one tRNA genes show a typical clover leaf structure, however, trnS1(AGN) lacks the dihydrouridine (DHU) stem. The secondary structures of rrnL and rrnS of two species were predicted, and there are several new stem loops near the 5’ of rrnL secondary structure. Based on comparative genomic analysis, four similar conservative structures can be found in the control regions of these two mitogenomes. The phylogenetic analyses were performed on mitogenomes of Nymphalidae. The phylogenetic trees show that the relationships among Nymphalidae are generally identical to previous studies, as follows: Libytheinae\Danainae + ((Calinaginae + Satyrinae) + Danainae\Libytheinae + ((Heliconiinae + Limenitidinae) + (Nymphalinae + (Apaturinae + Biblidinae)))). Hestinalisnama isapart fromHestina, andclosely related to Apatura, forming monophyly.


2021 ◽  
Author(s):  
Qing Liu ◽  
Chen Liu ◽  
Weicheng Li ◽  
Wenjun Liu ◽  
Qing Liu

Abstract Limosilactobacillus pontis is a species of lactic acid bacteria (LAB) found in fermented milk, sourdough and broiler chickens gastrointestinal tract and so on. However, the evolutionary strategies and genomic characteristics of the species remain unknown, which limits its application. In this study, whole genome sequencing was combined with a comparative genomic approach to investigate genomic characteristics and evolutionary strategies of L. pontis; this includes three published genomic sequences and two strains isolated from fermented milk in Inner Mongolia, China. The mean genome size and GC content of L. pontis was 1.70 Mb and 53.06%, respectively. Within the LAB L. pontis has a high GC content. The phylogenetic tree based on 1,281 core genomes showed that strains from the same sources aggregated together in clusters. Genome information, average nucleotide identity values, and phylogenetic relationships amongst L. pontis from different sources indicated that strains have potential niche adaptability. Functional genomic aspects, GT2 and GT4 (glycosyltransferases, GTs) involved in the synthesis of cellulose and sucrose were the family with the largest number of carbohydrate enzymes in L. pontis, particularly strains isolated from fermented milk. It is worth mentioning that the ability of L. pontis to produce bacteriocin may increase its application potential. This study provides new insight into the genetic characteristics and potential niche adaptations of L. pontis.


Sign in / Sign up

Export Citation Format

Share Document