scholarly journals Gauging genetic diversity of generalists: A test of genetic and ecological generalism with RNA virus experimental evolution

2019 ◽  
Vol 5 (1) ◽  
Author(s):  
Lele Zhao ◽  
Siobain Duffy

AbstractGeneralist viruses, those with a comparatively larger host range, are considered more likely to emerge on new hosts. The potential to emerge in new hosts has been linked to viral genetic diversity, a measure of evolvability. However, there is no consensus on whether infecting a larger number of hosts leads to higher genetic diversity, or whether diversity is better maintained in a homogeneous environment, similar to the lifestyle of a specialist virus. Using experimental evolution with the RNA bacteriophage phi6, we directly tested whether genetic generalism (carrying an expanded host range mutation) or environmental generalism (growing on heterogeneous hosts) leads to viral populations with more genetic variation. Sixteen evolved viral lineages were deep sequenced to provide genetic evidence for population diversity. When evolved on a single host, specialist and generalist genotypes both maintained the same level of diversity (measured by the number of single nucleotide polymorphisms (SNPs) above 1%, P = 0.81). However, the generalist genotype evolved on a single host had higher SNP levels than generalist lineages under two heterogeneous host passaging schemes (P = 0.001, P < 0.001). RNA viruses’ response to selection in alternating hosts reduces standing genetic diversity compared to those evolving in a single host to which the virus is already well-adapted.

2014 ◽  
Vol 80 (14) ◽  
pp. 4398-4413 ◽  
Author(s):  
Sam Crauwels ◽  
Bo Zhu ◽  
Jan Steensels ◽  
Pieter Busschaert ◽  
Gorik De Samblanx ◽  
...  

ABSTRACTBrettanomycesyeasts, with the speciesBrettanomyces(Dekkera)bruxellensisbeing the most important one, are generally reported to be spoilage yeasts in the beer and wine industry due to the production of phenolic off flavors. However,B. bruxellensisis also known to be a beneficial contributor in certain fermentation processes, such as the production of certain specialty beers. Nevertheless, despite its economic importance,Brettanomycesyeasts remain poorly understood at the genetic and genomic levels. In this study, the genetic relationship between more than 50Brettanomycesstrains from all presently known species and from several sources was studied using a combination of DNA fingerprinting techniques. This revealed an intriguing correlation between theB. bruxellensisfingerprints and the respective isolation source. To further explore this relationship, we sequenced a (beneficial) beer isolate ofB. bruxellensis(VIB X9085; ST05.12/22) and compared its genome sequence with the genome sequences of two wine spoilage strains (AWRI 1499 and CBS 2499). ST05.12/22 was found to be substantially different from both wine strains, especially at the level of single nucleotide polymorphisms (SNPs). In addition, there were major differences in the genome structures between the strains investigated, including the presence of large duplications and deletions. Gene content analysis revealed the presence of 20 genes which were present in both wine strains but absent in the beer strain, including many genes involved in carbon and nitrogen metabolism, and vice versa, no genes that were missing in both AWRI 1499 and CBS 2499 were found in ST05.12/22. Together, this study provides tools to discriminateBrettanomycesstrains and provides a first glimpse at the genetic diversity and genome plasticity ofB. bruxellensis.


2016 ◽  
Vol 141 (1) ◽  
pp. 62-65 ◽  
Author(s):  
Michael J. Havey ◽  
Yul-Kyun Ahn

Garlic (Allium sativum) is cultivated worldwide and appreciated for its culinary uses. In spite of primarily being asexually propagated, garlic shows great morphological variation and adaptability to diverse production environments. Molecular markers and phenotypic characteristics have been used to assess the genetic diversity among garlics. In this study, we undertook transcriptome sequencing from a single garlic plant to identify molecular markers in expressed regions of the garlic genome. Garlic sequences were assembled and selected if they were similar to monomorphic sequences from a doubled haploid (DH) of onion (Allium cepa). Single nucleotide polymorphisms (SNPs) and insertion–deletion (indel) events were identified in 4355 independent garlic assemblies. A sample of the indels was verified using the original complementary DNA (cDNA) library and genomics DNAs from diverse garlics, and segregations confirmed by sexual progenies of garlic. These molecular markers from the garlic transcriptome should be useful for estimates of genetic diversity, identification and removal of duplicate accessions from germplasm collections, and the development of a detailed genetic map of this important vegetable crop.


Plants ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 1190 ◽  
Author(s):  
Eunju Seo ◽  
Kipoong Kim ◽  
Tae-Hwan Jun ◽  
Jinsil Choi ◽  
Seong-Hoon Kim ◽  
...  

Cowpea is one of the most essential legume crops providing inexpensive dietary protein and nutrients. The aim of this study was to understand the genetic diversity and population structure of global and Korean cowpea germplasms. A total of 384 cowpea accessions from 21 countries were genotyped with the Cowpea iSelect Consortium Array containing 51,128 single-nucleotide polymorphisms (SNPs). After SNP filtering, a genetic diversity study was carried out using 35,116 SNPs within 376 cowpea accessions, including 229 Korean accessions. Based on structure and principal component analysis, a total of 376 global accessions were divided into four major populations. Accessions in group 1 were from Asia and Europe, those in groups 2 and 4 were from Korea, and those in group 3 were from West Africa. In addition, 229 Korean accessions were divided into three major populations (Q1, Jeonra province; Q2, Gangwon province; Q3, a mixture of provinces). Additionally, the neighbor-joining tree indicated similar results. Further genetic diversity analysis within the global and Korean population groups indicated low heterozygosity, a low polymorphism information content, and a high inbreeding coefficient in the Korean cowpea accessions. The population structure analysis will provide useful knowledge to support the genetic potential of the cowpea breeding program, especially in Korea.


2020 ◽  
Vol 61 (1) ◽  
pp. 17-23
Author(s):  
Michelle M. Nay ◽  
Stephen L. Byrne ◽  
Eduardo A. Pérez ◽  
Achim Walter ◽  
Bruno Studer

Genomics-assisted breeding of buckwheat (Fagopyrum esculentum Moench) depends on robust genotyping methods. Genotyping by sequencing (GBS) has evolved as a flexible and cost-effective technique frequently used in plant breeding. Several GBS pipelines are available to genetically characterize single genotypes but these are not able to represent the genetic diversity of buckwheat accessions that are maintained as genetically heterogeneous, open-pollinating populations. Here we report the development of a GBS pipeline which, rather than reporting the state of bi-allelic single nucleotide polymorphisms (SNPs), resolves allele frequencies within populations on a genome-wide scale. These genome-wide allele frequency fingerprints (GWAFFs) from 100 pooled individual plants per accession were found to be highly reproducible and revealed the genetic similarity of 20 different buckwheat accessions analysed in our study. The GWAFFs cannot only be used as an efficient tool to precisely describe buckwheat breeding material, they also offer new opportunities to investigate the genetic diversity between different buckwheat accessions and establish variant databases for key material. Furthermore, GWAFFs provide the opportunity to associate allele frequencies to phenotypic traits and quality parameters that are most reliably described on population level. This is the key to practically implement powerful genomics-assisted breeding concepts such as marker-assisted selection and genomic selection in future breeding schemes of allogamous buckwheat. Key words: Buckwheat (Fagopyrum esculentum Moench), genotyping by sequencing (GBS), population genomics, genome-wide allele frequency fingerprints (GWAFFs)   Izvleček Genomsko podprto žlahtnjenje ajde (Fagopyrum esculentum Moench) je odvisno od robustnih metod genotipiziranja. Genotipiziranje s spremljanjem sekvenc (genotyping by sequencing, GBS) se je razvilo kot fleksibilna in razmeroma poceni metoda, ki se jo uporablja pri žlahtnjenju rastlin. Uporabnih je več virov GBS za genetsko karakterizacijo posamičnih genotipov, toda te metode niso primerne za predstavitev genetske raznolikosti vzorcev ajde, ki jih vzdržujemo v heterozigotni obliki, kar velja za odprto oplodne populacije. Tu poročamo o razvoju GBS metode, ki, namesto prikazovanja bi-alelnega polimorfizma posameznih nukleotidov (single nucleotide polymorphisms, SNPs), pokaže frekvence alelov v populaciji na nivoju genoma. Ta prikaz frekvence alelov na nivoju genoma (genome-wide allele frequency fingerprints, GWAFFs) z združenimi sto posameznimi rastlinami vsakega vzorca se je pokazal kot visoko ponovljiv in je prikazal genetsko podobnost 20 različnih vzorcev ajde, ki smo jih analizirali v naši raziskavi. Metoda GWAFFs ni uporabna samo kot učinkovito orodje za natančen opis materiala za žlahtnjenje ajde, ponuja tudi možnosti raziskave  genetskih razlik med različnimi vzorci ajde in omogoča zbirke podatkov. Nadalje, metoda GWAFFs omogoča povezovanje frekvenc alelov s fenotipskimi lastnostmi in kvalitativnih parametrov, ki so najbolj zanesljivo opisani na nivoju populacij. To je ključ za praktično uporabo z genomiko podprtega žlahtnjenja, kot je z genskimi markerji podprta selekcija in genomska selekcija z GWAFFs. Ključne besede: ajda (Fagopyrum esculentum Moench), genotipizacija s sekvenciranjem (GBS), populacijska genomika, GWAFFs


2020 ◽  
Vol 63 (1) ◽  
pp. 193-201
Author(s):  
Heli Xiong ◽  
Xiaoming He ◽  
Jing Li ◽  
Xingneng Liu ◽  
Chaochao Peng ◽  
...  

Abstract. Lanping black-boned sheep was first discovered in the 1950s in Lanping county of China and characterized by black pigmentation on skin and internal organs. Due to the novel and unique trait, the genetic background of Lanping black-boned sheep is of great interest. Here, we genotyped genome-wide SNPs (single nucleotide polymorphisms) of Lanping black-boned sheep and Lanping normal sheep using Illumina OvineSNP50 BeadChip to investigate the genetic diversity and genetic origin of Lanping black-boned sheep. We also downloaded a subset SNP dataset of two Tibet-lineage sheep breeds and four other sheep breeds from the International Sheep Genomics Consortium (ISGC) as a reference for interpreting. Lanping black-boned sheep had a lower genetic diversity level when compared to seven other sheep breeds. Principal component analysis (PCA) showed that Lanping black-boned sheep and Lanping normal sheep were clustered into the Asian group, but there was no clear separation between the two breeds. Structure analysis demonstrated a high ancestry coefficient in Lanping black-boned sheep and Lanping normal sheep. However, the two populations were separated into two distinct branches in a neighbor-joining (NJ) tree. We further evaluated the genetic divergence using population FST, which showed that the genetic differentiation that existed between Lanping black-boned sheep and Lanping normal sheep was higher than that between Tibet sheep and Changthangi sheep, which revealed that Lanping black-boned sheep is a different breed from Lanping normal sheep on the genetic level. In addition, structure analysis and NJ tree showed that Lanping black-boned sheep had a relatively close relation with Tibet sheep. The results reported herein are a first step toward understanding the genetic background of Lanping black-boned sheep, and it will provide informative knowledge on the unique genetic resource conservation and mechanism of novel breed formation.


2021 ◽  
Vol 53 (4) ◽  
pp. 620-631

The Pto gene is a plant gene that has been reported to be involved in resistance to bacterial pathogens. A partial genomic sequence corresponding to Pto (~449 bp) was isolated from 16 species and four hybrids of Phalaenopsis during 2017 at the Department of Agronomy and Horticulture, IPB University, Bogor, Indonesia. Multiple sequence analysis was performed to find putative single nucleotide polymorphisms (SNPs) and design the corresponding single nucleotide-amplified polymorphism (SNAP) markers, which were in turn used to estimate the genetic diversity of 25 Phalaenopsis species. In total, 20 SNPs, of which 14 were nonsynonymous, were identified from the partial Pto sequences. Eighteen SNAP primers were then developed based on these 14 nonsynonymous and four synonymous SNPs. Validation results showed that 15 SNAP primers showed a polymorphism information content exceeding 0.3, suggesting the existence of more than two alleles for this locus. Upon their use, the SNAP markers described 86% of all interspecies variability. The Pto 52, Pto 349, Pto 229, and Pto 380 SNAP markers were very informative in the determination of genetic diversity. Notably, the existence of these nonsynonymous SNPs implied the possibility of functional changes within the amino acid sequence of the putative PTO protein. Thus, the resulting differences in the activity of the PTO protein may be used to breed tolerance to pathogen infection. Further work may be required to establish a functional link between tolerance to pathogens and the presence of Pto-SNAP markers in Phalaenopsis properly.


Genes ◽  
2020 ◽  
Vol 11 (11) ◽  
pp. 1298
Author(s):  
Caléo Panhoca de Almeida ◽  
Jean Fausto de Carvalho Paulino ◽  
Sérgio Augusto Morais Carbonell ◽  
Alisson Fernando Chiorato ◽  
Qijian Song ◽  
...  

Brazil is the largest consumer and third highest producer of common beans (Phaseolus vulgaris L.) worldwide. Since the 1980s, the commercial Carioca variety has been the most consumed in Brazil, followed by Black and Special beans. The present study evaluates genetic diversity and population structure of 185 Brazilian common bean cultivars using 2827 high-quality single-nucleotide polymorphisms (SNPs). The Andean allelic introgression in the Mesoamerican accessions was investigated, and a Carioca panel was tested using an association mapping approach. The results distinguish the Mesoamerican from the Andean accessions, with a prevalence of Mesoamerican accessions (94.6%). When considering the commercial classes, low levels of genetic differentiation were seen, and the Carioca group showed the lowest genetic diversity. However, gain in gene diversity and allelic richness was seen for the modern Carioca cultivars. A set of 1060 ‘diagnostic SNPs’ that show alternative alleles between the pure Mesoamerican and Andean accessions were identified, which allowed the identification of Andean allelic introgression events and shows that there are putative introgression segments in regions enriched with resistance genes. Finally, genome-wide association studies revealed SNPs significantly associated with flowering time, pod maturation, and growth habit, showing that the Carioca Association Panel represents a powerful tool for crop improvements.


2003 ◽  
Vol 131 (3) ◽  
pp. 1294-1301 ◽  
Author(s):  
Asiah Osman ◽  
Barbara Jordan ◽  
Philip A. Lessard ◽  
Norwati Muhammad ◽  
M. Rosli Haron ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document