scholarly journals Assessing Genetic Diversity among Brettanomyces Yeasts by DNA Fingerprinting and Whole-Genome Sequencing

2014 ◽  
Vol 80 (14) ◽  
pp. 4398-4413 ◽  
Author(s):  
Sam Crauwels ◽  
Bo Zhu ◽  
Jan Steensels ◽  
Pieter Busschaert ◽  
Gorik De Samblanx ◽  
...  

ABSTRACTBrettanomycesyeasts, with the speciesBrettanomyces(Dekkera)bruxellensisbeing the most important one, are generally reported to be spoilage yeasts in the beer and wine industry due to the production of phenolic off flavors. However,B. bruxellensisis also known to be a beneficial contributor in certain fermentation processes, such as the production of certain specialty beers. Nevertheless, despite its economic importance,Brettanomycesyeasts remain poorly understood at the genetic and genomic levels. In this study, the genetic relationship between more than 50Brettanomycesstrains from all presently known species and from several sources was studied using a combination of DNA fingerprinting techniques. This revealed an intriguing correlation between theB. bruxellensisfingerprints and the respective isolation source. To further explore this relationship, we sequenced a (beneficial) beer isolate ofB. bruxellensis(VIB X9085; ST05.12/22) and compared its genome sequence with the genome sequences of two wine spoilage strains (AWRI 1499 and CBS 2499). ST05.12/22 was found to be substantially different from both wine strains, especially at the level of single nucleotide polymorphisms (SNPs). In addition, there were major differences in the genome structures between the strains investigated, including the presence of large duplications and deletions. Gene content analysis revealed the presence of 20 genes which were present in both wine strains but absent in the beer strain, including many genes involved in carbon and nitrogen metabolism, and vice versa, no genes that were missing in both AWRI 1499 and CBS 2499 were found in ST05.12/22. Together, this study provides tools to discriminateBrettanomycesstrains and provides a first glimpse at the genetic diversity and genome plasticity ofB. bruxellensis.

mSystems ◽  
2018 ◽  
Vol 3 (5) ◽  
Author(s):  
Yoshikazu Furuta ◽  
Hayato Harima ◽  
Emiko Ito ◽  
Fumito Maruyama ◽  
Naomi Ohnishi ◽  
...  

ABSTRACTBacillus anthracisis a Gram-positive endospore-forming bacterial species that causes anthrax in both humans and animals. In Zambia, anthrax cases are frequently reported in both livestock and wildlife, with occasional transmission to humans, causing serious public health problems in the country. To understand the genetic diversity ofB. anthracisstrains in Zambia, we sequenced and compared the genomic DNA ofB. anthracisstrains isolated across the country. Single nucleotide polymorphisms clustered these strains into three groups. Genome sequence comparisons revealed a large deletion in strains belonging to one of the groups, possibly due to unequal crossing over between a pair of rRNA operons. The deleted genomic region included genes conferring resistance to bacitracin, and the strains with the deletion were confirmed with loss of bacitracin resistance. Similar deletions between rRNA operons were also observed in a fewB. anthracisstrains phylogenetically distant from Zambian strains. The structure of bacitracin resistance genes flanked by rRNA operons was conserved only in members of theBacillus cereusgroup. The diversity and genomic characteristics ofB. anthracisstrains determined in this study would help in the development of genetic markers and treatment of anthrax in Zambia.IMPORTANCEAnthrax is caused byBacillus anthracis, an endospore-forming soil bacterium. The genetic diversity ofB. anthracisis known to be low compared with that ofBacillusspecies. In this study, we performed whole-genome sequencing of Zambian isolates ofB. anthracisto understand the genetic diversity between closely related strains. Comparison of genomic sequences revealed that closely related strains were separated into three groups based on single nucleotide polymorphisms distributed throughout the genome. A large genomic deletion was detected in the region containing a bacitracin resistance gene cluster flanked by rRNA operons, resulting in the loss of bacitracin resistance. The structure of the deleted region, which was also conserved among species of theBacillus cereusgroup, has the potential for both deletion and amplification and thus might be enabling the species to flexibly control the level of bacitracin resistance for adaptive evolution.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Laura Costantini ◽  
Paula Moreno-Sanz ◽  
Chinedu Charles Nwafor ◽  
Silvia Lorenzi ◽  
Annarita Marrano ◽  
...  

Abstract Background Grapevine reproductive development has direct implications on yield. It also impacts on berry and wine quality by affecting traits like seedlessness, berry and bunch size, cluster compactness and berry skin to pulp ratio. Seasonal fluctuations in yield, fruit composition and wine attributes, which are largely driven by climatic factors, are major challenges for worldwide table grape and wine industry. Accordingly, a better understanding of reproductive processes such as gamete development, fertilization, seed and fruit set is of paramount relevance for managing yield and quality. With the aim of providing new insights into this field, we searched for clones with contrasting seed content in two germplasm collections. Results We identified eight variant pairs that seemingly differ only in seed-related characteristics while showing identical genotype when tested with the GrapeReSeq_Illumina_20K_SNP_chip and several microsatellites. We performed multi-year observations on seed and fruit set deriving from different pollination treatments, with special emphasis on the pair composed by Sangiovese and its seedless variant locally named Corinto Nero. The pollen of Corinto Nero failed to germinate in vitro and gave poor berry set when used to pollinate other varieties. Most berries from both open- and cross-pollinated Corinto Nero inflorescences did not contain seeds. The genetic analysis of seedlings derived from occasional Corinto Nero normal seeds revealed that the few Corinto Nero functional gametes are mostly unreduced. Moreover, three genotypes, including Sangiovese and Corinto Nero, were unexpectedly found to develop fruits without pollen contribution and occasionally showed normal-like seeds. Five missense single nucleotide polymorphisms were identified between Corinto Nero and Sangiovese from transcriptomic data. Conclusions Our observations allowed us to attribute a seedlessness type to some variants for which it was not documented in the literature. Interestingly, the VvAGL11 mutation responsible for Sultanina stenospermocarpy was also discovered in a seedless mutant of Gouais Blanc. We suggest that Corinto Nero parthenocarpy is driven by pollen and/or embryo sac defects, and both events likely arise from meiotic anomalies. The single nucleotide polymorphisms identified between Sangiovese and Corinto Nero are suitable for testing as traceability markers for propagated material and as functional candidates for the seedless phenotype.


2016 ◽  
Vol 141 (1) ◽  
pp. 62-65 ◽  
Author(s):  
Michael J. Havey ◽  
Yul-Kyun Ahn

Garlic (Allium sativum) is cultivated worldwide and appreciated for its culinary uses. In spite of primarily being asexually propagated, garlic shows great morphological variation and adaptability to diverse production environments. Molecular markers and phenotypic characteristics have been used to assess the genetic diversity among garlics. In this study, we undertook transcriptome sequencing from a single garlic plant to identify molecular markers in expressed regions of the garlic genome. Garlic sequences were assembled and selected if they were similar to monomorphic sequences from a doubled haploid (DH) of onion (Allium cepa). Single nucleotide polymorphisms (SNPs) and insertion–deletion (indel) events were identified in 4355 independent garlic assemblies. A sample of the indels was verified using the original complementary DNA (cDNA) library and genomics DNAs from diverse garlics, and segregations confirmed by sexual progenies of garlic. These molecular markers from the garlic transcriptome should be useful for estimates of genetic diversity, identification and removal of duplicate accessions from germplasm collections, and the development of a detailed genetic map of this important vegetable crop.


2013 ◽  
Vol 57 (11) ◽  
pp. 5658-5664 ◽  
Author(s):  
Soo-Jin Yang ◽  
Nagendra N. Mishra ◽  
Aileen Rubio ◽  
Arnold S. Bayer

ABSTRACTSingle nucleotide polymorphisms (SNPs) within themprFopen reading frame (ORF) have been commonly observed in daptomycin-resistant (DAPr)Staphylococcus aureusstrains. Such SNPs are usually associated with a gain-in-function phenotype, in terms of either increased synthesis or enhanced translocation (flipping) of lysyl-phosphatidylglycerol (L-PG). However, it is unclear if suchmprFSNPs are causal in DAPrstrains or are merely a biomarker for this phenotype. In this study, we used an isogenic set ofS. aureusstrains: (i) Newman, (ii) its isogenic ΔmprFmutant, and (iii) several intransplasmid complementation constructs, expressing either a wild-type or point-mutated form of themprFORF cloned from two isogenic DAP-susceptible (DAPs)-DAPrstrain pairs (616-701 and MRSA11/11-REF2145). Complementation of the ΔmprFstrain with singly point-mutatedmprFgenes (mprFS295LormprFT345A) revealed that (i) individual and distinct point mutations within themprFORF can recapitulate phenotypes observed in donor strains (i.e., changes in DAP MICs, positive surface charge, and cell membrane phospholipid profiles) and (ii) these gain-in-function SNPs (i.e., enhanced L-PG synthesis) likely promote reduced DAP binding toS. aureusby a charge repulsion mechanism. Thus, for these two DAPrstrains, the definedmprFSNPs appear to be causally related to this phenotype.


2019 ◽  
Vol 63 (7) ◽  
Author(s):  
Marva Seifert ◽  
Edmund Capparelli ◽  
Donald G. Catanzaro ◽  
Timothy C. Rodwell

ABSTRACT Clinical phenotypic fluoroquinolone susceptibility testing of Mycobacterium tuberculosis is currently based on M. tuberculosis growth at a single critical concentration, which provides limited information for a nuanced clinical response. We propose using specific resistance-conferring M. tuberculosis mutations in gyrA together with population pharmacokinetic and pharmacodynamic modeling as a novel tool to better inform fluoroquinolone treatment decisions. We sequenced the gyrA resistance-determining region of 138 clinical M. tuberculosis isolates collected from India, Moldova, Philippines, and South Africa and then determined each strain’s MIC against ofloxacin, moxifloxacin, levofloxacin, and gatifloxacin. Strains with specific gyrA single-nucleotide polymorphisms (SNPs) were grouped into high or low drug-specific resistance categories based on their empirically measured MICs. Published population pharmacokinetic models were then used to explore the pharmacokinetics and pharmacodynamics of each fluoroquinolone relative to the empirical MIC distribution for each resistance category to make predictions about the likelihood of patients achieving defined therapeutic targets. In patients infected with M. tuberculosis isolates containing SNPs associated with a fluoroquinolone-specific low-level increase in MIC, models suggest increased fluoroquinolone dosing improved the probability of achieving therapeutic targets for gatifloxacin and moxifloxacin but not for levofloxacin and ofloxacin. In contrast, among patients with isolates harboring SNPs associated with a high-level increase in MIC, increased dosing of levofloxacin, moxifloxacin, gatifloxacin, or ofloxacin did not meaningfully improve the probability of therapeutic target attainment. We demonstrated that quantifiable fluoroquinolone drug resistance phenotypes could be predicted from rapidly detectable gyrA SNPs and used to support dosing decisions based on the likelihood of patients reaching therapeutic targets. Our findings provide further supporting evidence for the moxifloxacin clinical breakpoint recently established by the World Health Organization.


2019 ◽  
Vol 63 (10) ◽  
Author(s):  
Ruimin Zhou ◽  
Chengyun Yang ◽  
Suhua Li ◽  
Yuling Zhao ◽  
Ying Liu ◽  
...  

ABSTRACT Angola was the main origin country for the imported malaria in Henan Province, China. Antimalarial drug resistance has posed a threat to the control and elimination of malaria. Several molecular markers were confirmed to be associated with the antimalarial drug resistance, such as pfcrt, pfmdr1, pfdhfr, pfdhps, and K13. This study evaluated the drug resistance of the 180 imported Plasmodium falciparum isolates from Angola via nested PCR using Sanger sequencing. The prevalences of pfcrt C72V73M74N75K76, pfmdr1 N86Y184S1034N1042D1246, pfdhfr A16N51C59S108D139I164, and pfdhps S436A437A476K540A581 were 69.4%, 59.9%, 1.3% and 6.3%, respectively. Three nonsynonymous (A578S, M579I, and Q613E) and one synonymous (R471R) mutation of K13 were found, the prevalences of which were 2.5% and 1.3%, respectively. The single nucleotide polymorphisms (SNPs) in pfcrt, pfmdr1, pfdhfr, and pfdhps were generally shown as multiple mutations. The mutant prevalence of pfcrt reduced gradually, but pfdhfr and pfdhps still showed high mutant prevalence, while pfmdr1 was relatively low. The mutation of the K13 gene was rare. Molecular surveillance of artemisinin (ART) resistance will be used as a tool to evaluate the real-time efficacy of the artemisinin-based combination therapies (ACTs) and the ART resistance situation.


Plants ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 1190 ◽  
Author(s):  
Eunju Seo ◽  
Kipoong Kim ◽  
Tae-Hwan Jun ◽  
Jinsil Choi ◽  
Seong-Hoon Kim ◽  
...  

Cowpea is one of the most essential legume crops providing inexpensive dietary protein and nutrients. The aim of this study was to understand the genetic diversity and population structure of global and Korean cowpea germplasms. A total of 384 cowpea accessions from 21 countries were genotyped with the Cowpea iSelect Consortium Array containing 51,128 single-nucleotide polymorphisms (SNPs). After SNP filtering, a genetic diversity study was carried out using 35,116 SNPs within 376 cowpea accessions, including 229 Korean accessions. Based on structure and principal component analysis, a total of 376 global accessions were divided into four major populations. Accessions in group 1 were from Asia and Europe, those in groups 2 and 4 were from Korea, and those in group 3 were from West Africa. In addition, 229 Korean accessions were divided into three major populations (Q1, Jeonra province; Q2, Gangwon province; Q3, a mixture of provinces). Additionally, the neighbor-joining tree indicated similar results. Further genetic diversity analysis within the global and Korean population groups indicated low heterozygosity, a low polymorphism information content, and a high inbreeding coefficient in the Korean cowpea accessions. The population structure analysis will provide useful knowledge to support the genetic potential of the cowpea breeding program, especially in Korea.


2015 ◽  
Vol 53 (10) ◽  
pp. 3141-3147 ◽  
Author(s):  
M. D. Cairns ◽  
M. D. Preston ◽  
T. D. Lawley ◽  
T. G. Clark ◽  
R. A. Stabler ◽  
...  

Clostridium difficileremains the leading cause of nosocomial diarrhea worldwide, which is largely considered to be due to the production of two potent toxins: TcdA and TcdB. However, PCR ribotype (RT) 017, one of five clonal lineages of human virulentC. difficile, lacks TcdA expression but causes widespread disease. Whole-genome sequencing was applied to 35 isolates from hospitalized patients withC. difficileinfection (CDI) and two environmental ward isolates in London, England. The phylogenetic analysis of single nucleotide polymorphisms (SNPs) revealed a clonal cluster of temporally variable isolates from a single hospital ward at University Hospital Lewisham (UHL) that were distinct from other London hospital isolates.De novoassembled genomes revealed a 49-kbp putative conjugative transposon exclusive to this hospital clonal cluster which would not be revealed by current typing methodologies. This study identified three sublineages ofC. difficileRT017 that are circulating in London. Similar to the notorious RT027 lineage, which has caused global outbreaks of CDI since 2001, the lineage of toxin-defective RT017 strains appears to be continually evolving. By utilization of WGS technologies to identify SNPs and the evolution of clonal strains, the transmission of outbreaks caused by near-identical isolates can be retraced and identified.


2015 ◽  
Vol 60 (1) ◽  
pp. 387-392 ◽  
Author(s):  
Faezeh Mohammadi ◽  
Seyed Jamal Hashemi ◽  
Jan Zoll ◽  
Willem J. G. Melchers ◽  
Haleh Rafati ◽  
...  

ABSTRACTWe employed an endpoint genotyping method to update the prevalence rate of positivity for the TR34/L98H mutation (a 34-bp tandem repeat mutation in the promoter region of thecyp51Agene in combination with a substitution at codon L98) and the TR46/Y121F/T289A mutation (a 46-bp tandem repeat mutation in the promoter region of thecyp51Agene in combination with substitutions at codons Y121 and T289) among clinicalAspergillus fumigatusisolates obtained from different regions of Iran over a recent 5-year period (2010 to 2014). The antifungal activities of itraconazole, voriconazole, and posaconazole against 172 clinicalA. fumigatusisolates were investigated using the European Committee on Antimicrobial Susceptibility Testing (EUCAST) broth microdilution method. For the isolates with an azole resistance phenotype, thecyp51Agene and its promoter were amplified and sequenced. In addition, using a LightCycler 480 real-time PCR system, a novel endpoint genotyping analysis method targeting single-nucleotide polymorphisms was evaluated to detect the L98H and Y121F mutations in thecyp51Agene of all isolates. Of the 172A. fumigatusisolates tested, the MIC values of itraconazole (≥16 mg/liter) and voriconazole (>4 mg/liter) were high for 6 (3.5%). Quantitative analysis of single-nucleotide polymorphisms showed the TR34/L98H mutation in thecyp51Agenes of six isolates. No isolates harboring the TR46/Y121F/T289A mutation were detected. DNA sequencing of thecyp51Agene confirmed the results of the novel endpoint genotyping method. By microsatellite typing, all of the azole-resistant isolates had genotypes different from those previously recovered from Iran and from the Dutch TR34/L98H controls. In conclusion, there was not a significant increase in the prevalence of azole-resistantA. fumigatusisolates harboring the TR34/L98H resistance mechanism among isolates recovered over a recent 5-year period (2010 to 2014) in Iran. A quantitative assay detecting a single-nucleotide polymorphism in thecyp51Agene ofA. fumigatusis a reliable tool for the rapid screening and monitoring of TR34/L98H- and TR46/Y121F/T289A-positive isolates and can easily be incorporated into clinical mycology algorithms.


2015 ◽  
Vol 197 (17) ◽  
pp. 2780-2791 ◽  
Author(s):  
Youai Hao ◽  
Kathleen Murphy ◽  
Reggie Y. Lo ◽  
Cezar M. Khursigara ◽  
Joseph S. Lam

ABSTRACTPseudomonas aeruginosaPA14 is widely used by researchers in many laboratories because of its enhanced virulence over strain PAO1 in a wide range of hosts. Although lipopolysaccharide (LPS) is an important virulence factor of allP. aeruginosastrains, the LPS of PA14 has not been characterized fully. A recent study showed that the structure of its O-specific antigen (OSA) belongs to serotype O19. We found that the OSA gene cluster of PA14 shares ∼99% identity with those of the O10/O19 group. These two serotypes share the same O-unit structure, except for anO-acetyl substitution in one of the sugars in O10. Here we showed that both PA14 and O19 LPS cross-reacted with the O10-specific monoclonal antibody MF76-2 in Western blots. Analysis by SDS-PAGE and silver staining showed that PA14 LPS exhibited modal chain lengths that were different from those of O19 LPS, in that only “very long” and “short” chain lengths were observed, while “medium” and “long” chain lengths were not detected. Two other novel observations included the lack of the uncapped core oligosaccharide epitope and of common polysaccharide antigen (CPA) LPS. The lack of the uncapped core oligosaccharide was caused by point mutations in the glycosyltransferase genemigA, while the CPA-negative phenotype was correlated with a single amino acid substitution, G20R, in the glycosyltransferase WbpX. Additionally, we showed that restoring CPA biosynthesis in PA14 significantly stimulated mature biofilm formation after 72 h, while outer membrane vesicle production was not affected.IMPORTANCEP. aeruginosaPA14 is a clinical isolate that has become an important reference strain used by many researchers worldwide. LPS of PA14 has not been characterized fully, and hence, confusion about its phenotype exists in the literature. In the present study, we set out to characterize the O-specific antigen (OSA), the common polysaccharide antigen (CPA), and the core oligosaccharide produced by PA14. We present evidence that PA14 produces an LPS consisting of “very-long-chain” and some “short-chain” OSA belonging to the O19 serotype but is devoid of CPA and the uncapped core oligosaccharide epitope. These intrinsic defects in PA14 LPS were due to single-nucleotide polymorphisms (SNPs) in the genes that encode glycosyltransferases in the corresponding biosynthesis pathways. Since sugars in CPA and the uncapped core are receptors for different bacteriocins and pyocins, the lack of CPA and an intact core may contribute to the increased virulence of PA14. Restoring CPA production in PA14 was found to stimulate mature biofilm formation.


Sign in / Sign up

Export Citation Format

Share Document