Changes in Soil Physical Properties due to Cable Yarding and their Hydrologic Implications

1992 ◽  
Vol 7 (2) ◽  
pp. 36-39 ◽  
Author(s):  
Michael D. Purser ◽  
Terrance W. Cundy

Abstract This study was performed to measure changes in soil properties due to cable yarding and to estimate the resulting changes in hydrologic response. Soils were sampled before and after a commercial logging operation in the northern Cascade Mountains of Washington. The samples were analyzed for saturated hydraulic conductivity (Ks), moisture release characteristics, and bulk density (BD). Postlogging Ks values ranged from 1.08 to 497 cm/h and were significantly less than prelogging values, which ranged from 10.8 to 623 cm/h. Postlogging bulk densities ranged from 0.34 to 1.13 g/cm³ and were significantly greater than prelogging values, which ranged from 0.10 to 0.95 g/cm³. Because of the high Ks values it was concluded that Horton overland flow is not a dominant process even after disturbance. A 32.7% reduction in available water storage was found due to decreases in noncapillary porosity and surface horizon thickness. From this, increases in saturation overland flow and/or subsurface flow are predicted on skid trails. Overall impacts on the cutting unit however are considered small. West. J. Appl. For. 7(2):36-39.

2020 ◽  
Vol 42 (10) ◽  
pp. 482-492
Author(s):  
Keong-Hyeon An ◽  
Songhee Kim ◽  
Seung-Woo Jeong

Objectives : Changes in soil properties after washing of metal-contaminated soil near the former Janghang Smelter were investigated in this study. Contaminated input soils and remediated output soils were sampled from three different soil washing plants and analyzed for soil physical and chemical properties. Soil quality was evaluated by the soil fertilization guideline suggested by the Korea Rural Development Administration (KRDA). This study revealed the necessity of soil quality management for the remediated soil as an ecosystem member.Methods : Three soil washing plants (1OU, 2OU, 3OU) were commonly divided into the five steps: 1) the particle separation (crushing and grinding etc.) → 2) soil particle classification (big stone, fine soil, minimal fine soil) → 3) chemical washing (fine soil) → 4) neutralization of washed soil (lime) → 5) return-back to the original position. The separating minimum particle diameters of the 1OU, 2OU, and 3OU washing processes were 5 µm, 20 µm, and 10 µm, respectively, and the chemical washing solutions used were respectively 0.1 M H2SO4, 0.5 M H2SO4/0.5 M H3PO4, and 0.1 N NaOH-Na2CO3 (alkali reduction). Soils were collected before and after washing, air-dried, sieved with < 2 mm and analyzed for soil texture, bulk density, aggregate stability (AS), water holding capacity (WHC), pH, electrical conductivity (EC), organic matter content (OM), total nitrogen (TN), available phosphate (AvP), cation exchange capacity (CEC), exchangeable cations (potassium, calcium, magnesium, sodium).Results and Discussion : Sandy soil showed a big change in soil texture before and after soil washing, while there was no change in soil texture for fine soil. Sandy soil showed an increase in bulk density, a decrease in WHC, and a decrease in AS. The pH of remediated soil was affected by the type of washing chemical. The acidic washing processes (1OU, 2OU) resulted in low pH soils, while an alkali reduction process (3OU) showed high pH soil. The soil OM, TN, AvP and CEC decreased after soil washing. In the case of silty paddy soil, OM and TN were significantly reduced by washing. The most important change in soil property after washing was EC. After soil washing, the soil electrical conductivity increased sharply in all OUs : 1OU 0.51 → 6.21 ds/m, 2OU 1.09 → 3.73 ds/m, 3OU 0.99 → 9.30 ds/m. The EC values of the contaminated soil before washing were all less than 2 ds/m, which is an appropriate agricultural level. However, EC was significantly increased after washing, implying a strong salty soil level. The soil quality evaluation results before and after washing showed that the soil quality of heavy-metal contaminated soil was apparently degraded by washing. The number of soil property in the optimal range before washing (contaminated soil) was 10, but the number decreased to 5 after washing (remediated soil).Conclusions : Soil quality may be significantly changed after soil washing. The most noticeable change was the significant increase in the EC of soil and the soil health should be restored first to recycle the remediated soil. The important causes of changes in the soil quality were the separation of fine soil particles containing relatively high heavy metals from the bulk soil, soil disturbance by chemical washing solution and addition of high salts such as coagulants and pH adjust. Soil management schemes considering soil health should be soon prepared to restore the remediated soil back as an ecosystem member.


Soil Research ◽  
2003 ◽  
Vol 41 (8) ◽  
pp. 1521 ◽  
Author(s):  
R. W. McDowell ◽  
J. J. Drewry ◽  
R. W. Muirhead ◽  
R. J. Paton

This 1-year study investigated the effect of dairy cow treading on soil physical properties and sediment and phosphorus (P) loss via overland flow from pasture and cultivated soil used for wintering dairy cows in southern New Zealand. Treading decreased soil macroporosity and Ksat, and increased overland flow volumes. Treading increased mean suspended sediment concentration in overland flow in the cultivated + trodden treatment (2.6 g/L) compared with ungrazed pasture (0.44 g/L) and ungrazed cultivated (0.98 g/L) treatments over 2 slope positions. Following grazing in the cultivated + trodden treatment, only 25% more sediment was lost in subsequent overland flow events (2.09 and 2.63 g before and after grazing, respectively), and mean total P (TP) losses increased by >250% (from 0.7 to 2.5 mg P). Meanwhile in the cultivated but ungrazed treatment, sediment and TP loss decreased. The increased loss of sediment and P following grazing in the cultivated + trodden treatment was attributed to P from cattle dung, and soil disturbance. Consequently, wintering of animals on cultivated paddocks with forage crops increases the risk of losing much P, especially in particulate form.


1993 ◽  
Vol 17 (1) ◽  
pp. 22-25 ◽  
Author(s):  
W. M. Aust ◽  
T. W. Reisinger ◽  
J. A. Burger ◽  
B. J. Stokes

Abstract A wet pine flat in the coastal plain of South Carolina was harvested with a rubber-tired skidder equipped with 68-in.-wide tires. Soil physical properties were measured immediately before and after a salvage harvest to document changes associated with traffic disturbance. Paired t-tests indicate that the wide-tired operation significantly increased soil volumetric water content, bulk density, and soil strength, and decreased saturated hydraulic conductivity, soil porosity, and depth to the water table. Changes were greatest for the more disturbed areas, and rutting that occurred in the skid trails apparently interrupted subsurface drainage. South. J. Appl. For. 17(1):22-25.


2020 ◽  
Vol 38 (4) ◽  
pp. 1029-1038
Author(s):  
Jéssyca Stanieski de SOUZA ◽  
Isabel Kaufmann de ALMEIDA ◽  
Glauber Altrão CARVALHO ◽  
Teodorico ALVES SOBRINHO ◽  
Cláudia Gonçalves Vianna BACCHI

This study investigated the influence of the environmental characteristics and soil properties on the soil infiltration rate in urban permeable area. The experiments were conducted at nine sampling points located in the urban perimeter of Campo Grande, capital city of Mato Grosso do Sul State, in the Brazilian Midwest. The infiltration rates were determined using a portable integrated rainfall and overland flow simulator. Each experiment was repeated three times, and a total of twenty-seven plots were collected. At the same time, environmental characteristics and soil physical properties, that may affect infiltration rate, were also evaluated. The relationship between the infiltration rate, the environmental plot characteristics and the soil physical properties was verified using a linear correlation matrix.


2018 ◽  
Vol 72 (3) ◽  
pp. 129-137 ◽  
Author(s):  
Milena Kostic ◽  
Ljubisa Nikolic ◽  
Vesna Nikolic ◽  
Dusan Petkovic ◽  
Marko Igic ◽  
...  

Acrylic restorations in the mouth are exposed to strong occlusal forces. Their mechanical properties depend on the type and method of their polymerization. The aim of this study is a comparative analysis of mechanical properties (flexural strength and modulus of elasticity) of acrylic materials before and after the post-polymerization treatments (water boiling, microwave irradiation and water storage). The study included denture base resins, as well as an acrylate for orthodontic appliances impregnated with aesthetic beads. Flexural strength, modulus of elasticity and the deflection were measured immediately after polymerization, after a hot and microwave post-polymerization and after immersion in a water bath at the temperature of 37?C. The applied post-polymerization methods resulted in an increase in flexural strength and modulus of elasticity relative to the initial values for all tested materials. Being aware of the reduction in fracture risk of dental prosthesis after a proposed post-polymerization procedure, it could be used in all clinical situations where there is an increased risk of damage to dentures.


2020 ◽  
Author(s):  
Xiangzhou Xu ◽  
Feilong Xu Xu ◽  
Wenzhao Guo ◽  
Chao Zhao

&lt;p&gt;Gravity erosion is one of the most remarkable natural hazards in mountainous regions, especially on the Loess Plateau of China. Nevertheless, the measurement of failure mass is very difficult because gravity erosion usually occurs randomly and it combines with hydraulic erosion. Here we present a novel testing technique that could quantitatively measure time-variable gravity erosion on the steep loess slopes. A structured light 3D surface measuring apparatus, the Topography Meter, was designed and manufactured in our laboratory. Dynamic variation of the steep slope relief was monitored under rainfall simulation and the slope deforming process was recorded by a computer video technology. With the help of laser marking, plane figures were vectorially transformed into 3D graphs, thus the shape of target surface was accurately computed. By comparing the slope geometries in the moments before and after the erosion incident on the snapshot images at a particular time, we could obtain the volume of gravity erosion and many other erosion data, including the volume of slide mass, the amount of soil loss eroded by overland flow, etc. A series of calibration tests were conducted and the results showed that the accuracy of this technique was high and sufficient for exploring the mechanism of slope erosion. More than 120 rainfall simulation events were subsequently tested with the apparatus, further confirming its feasibility and reliability.&lt;/p&gt;


2016 ◽  
Vol 53 (9) ◽  
pp. 1533-1546 ◽  
Author(s):  
Scott J. Ketcheson ◽  
Jonathan S. Price

Establishing hydrological connectivity in reconstructed landscapes, and understanding how this connectivity evolves over time, is critical for the development of effective water management strategies after oil sands extraction. In the current study, the dominant controls on the soil water regimes and runoff generation mechanisms on two contrasting reclaimed slopes (2 and 6 years after reclamation) in the Athabasca oil sands region are investigated. The most recently reclaimed slope demonstrated a hydrologic regime with limited soil water storage due to a low surface infiltration capacity that constrained percolation of rainfall. Accordingly, this slope generated a substantial amount of surface runoff controlled primarily by precipitation intensity. Conversely, the older slope had a greater surface infiltration capacity, more dynamic soil water regime, and infrequent surface runoff. Topography controlled soil water distribution on the older slope more strongly than the newer slope due to more efficient water redistribution. This suggests that changes in the hydrophysical properties of reclamation materials following construction result in a shift in the hydrological role of reclaimed slopes at the watershed scale. Thus, over time, reclaimed slopes produce less overland flow and shift from water conveyors to water storage features in constructed watershed systems.


Sign in / Sign up

Export Citation Format

Share Document