Effect of fiber enrichment level and fiber particle size on the extrusion properties of split yellow pea flour.

CFW Plexus ◽  
2013 ◽  
Author(s):  
Peter Frohlich ◽  
G. Boux ◽  
L. Malcolmson
Keyword(s):  
2000 ◽  
Vol 80 (1) ◽  
pp. 203-206 ◽  
Author(s):  
C. Bayourthe ◽  
R. Moncoulon ◽  
F. Enjalbert

Ruminal disappearance characteristics of OM, CP and starch relative to particle size of dehulled pea seeds were determined using the in sacco method. Fine grinding (≤502 µm) highly increased the rapidly CP and starch degradable fractions and the rate of degradation of these nutrients. Key words: Pea flour, particle size, rumen degradation, crude protein, starch


Processes ◽  
2021 ◽  
Vol 9 (10) ◽  
pp. 1836
Author(s):  
Manoj Kumar Pulivarthi ◽  
Eric Nkurikiye ◽  
Jason Watt ◽  
Yonghui Li ◽  
Kaliramesh Siliveru

The development of convenience foods by incorporating nutrient-rich pulses such as peas and lentils will tremendously alter the future of pulse and cereal industries. However, these pulses should be size-reduced before being incorporated into many food products. Therefore, an attempt was made to adapt roller mill settings to produce de-husked yellow pea and red lentil flours. The milling flowsheets unique to yellow peas and red lentils were developed in producing small, medium, and large flours with maximum yield and flour quality. This study also investigated the differences in chemical composition, physical characteristics, and particle size distributions of the resultant six flour fractions. The kernel dimensions and physicochemical properties of the whole yellow pea and red lentils were also studied to develop customized mill settings. Overall, the mill settings had a significant effect on the physical properties of different particle-sized flours. The geometric mean diameters of different particle-sized red lentil flours were 56.05 μm (small), 67.01 μm (medium), and 97.17 μm (large), while for yellow pea flours they were 41.38 μm (small), 60.81 μm (medium), and 98.31 μm (large). The particle size distribution of all the flour types showed a bimodal distribution, except for the small-sized yellow pea flour. For both the pulse types, slightly more than 50% flour was approximately sizing 50 μm, 75 μm, and 100 μm for small, medium, and large settings, respectively. The chemical composition of the flour types remained practically the same for different-sized flours, fulfilling the objective of this current study. The damaged starch values for red lentil and yellow pea flour types increased with a decrease in flour particle size. Based on the Hausner’s ratios, the flowability of large-sized flour of red lentils could be described as passable; however, all the remaining five flour types were indicated as either poor or very poor. The findings of this study assist the millers to adapt yellow pea and red lentil milling technologies with minor modifications to the existing facilities. The study also helps in boosting the production of various baking products using pulse and wheat flour blends to enhance their nutritional quality.


Processes ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 489
Author(s):  
Serap Vatansever ◽  
Minwei Xu ◽  
Ana Magallanes-López ◽  
Bingcan Chen ◽  
Clifford Hall

Supercritical carbon dioxide + ethanol (SC-CO2+EtOH) extraction, was employed as a deflavoring method to improve the sensory properties of pea flours. Furthermore, the impacts of particle size along with extraction on volatile profile and sensory attributes of pea flours were investigated using multiple approaches. These included headspace solid-phase microextraction-gas chromatography (HS-SPME-GC), GC-olfactometry (GC-O), and quantitative descriptive analysis (QDA) using a trained sensory panel. Total volatile contents of non-deflavored and deflavored whole pea flour and its fractions were in the range of 7.1 ± 0.3 to 18.1 ± 1.0 µg/g and 0.4 ± 0.1 to 2.7 ± 0.4 µg/g, respectively. The GC-O system showed that the total volatile intensity was in the range of 14.5 to 22.0 and 0 to 3.5, for non-deflavored and deflavored pea flours, respectively. Volatile analyses indicated that 1-hexanol, 1-octanol, 1-nonanol, nonanal, and 2-alkyl methoxypyrazines were major off-aroma compounds. Most off-aroma compounds were not detected in deflavored pea flours. QDA revealed less pea intensity and bitterness of deflavored pea flours. The larger particle size of flours resulted in less off-aroma compounds based on the GC data but more bitterness based on QDA. The SC-CO2+EtOH extraction at optimum conditions and particle size modifications can be a potential technology to improve the organoleptic properties of pulse ingredients.


Author(s):  
C. J. Chan ◽  
K. R. Venkatachari ◽  
W. M. Kriven ◽  
J. F. Young

Dicalcium silicate (Ca2SiO4) is a major component of Portland cement. It has also been investigated as a potential transformation toughener alternative to zirconia. It has five polymorphs: α, α'H, α'L, β and γ. Of interest is the β-to-γ transformation on cooling at about 490°C. This transformation, accompanied by a 12% volume increase and a 4.6° unit cell shape change, is analogous to the tetragonal-to-monoclinic transformation in zirconia. Due to the processing methods used, previous studies into the particle size effect were limited by a wide range of particle size distribution. In an attempt to obtain a more uniform size, a fast quench rate involving a laser-melting/roller-quenching technique was investigated.The laser-melting/roller-quenching experiment used precompacted bars of stoichiometric γ-Ca2SiO4 powder, which were synthesized from AR grade CaCO3 and SiO2xH2O. The raw materials were mixed by conventional ceramic processing techniques, and sintered at 1450°C. The dusted γ-Ca2SiO4 powder was uniaxially pressed into 0.4 cm x 0.4 cm x 4 cm bars under 34 MPa and cold isostatically pressed under 172 MPa. The γ-Ca2SiO4 bars were melted by a 10 KW-CO2 laser.


Author(s):  
Sooho Kim ◽  
M. J. D’Aniello

Automotive catalysts generally lose-agtivity during vehicle operation due to several well-known deactivation mechanisms. To gain a more fundamental understanding of catalyst deactivation, the microscopic details of fresh and vehicle-aged commercial pelleted automotive exhaust catalysts containing Pt, Pd and Rh were studied by employing Analytical Electron Microscopy (AEM). Two different vehicle-aged samples containing similar poison levels but having different catalytic activities (denoted better and poorer) were selected for this study.The general microstructure of the supports and the noble metal particles of the two catalysts looks similar; the noble metal particles were generally found to be spherical and often faceted. However, the average noble metal particle size on the poorer catalyst (21 nm) was larger than that on the better catalyst (16 nm). These sizes represent a significant increase over that found on the fresh catalyst (8 nm). The activity of these catalysts decreases as the observed particle size increases.


Wear ◽  
2020 ◽  
pp. 203579
Author(s):  
G. Haider ◽  
M. Othayq ◽  
J. Zhang ◽  
R.E. Vieira ◽  
S.A. Shirazi

Sign in / Sign up

Export Citation Format

Share Document