scholarly journals Supercritical Carbon Dioxide + Ethanol Extraction to Improve Organoleptic Attributes of Pea Flour with Applications of Sensory Evaluation, HS-SPME-GC, and GC-Olfactory

Processes ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 489
Author(s):  
Serap Vatansever ◽  
Minwei Xu ◽  
Ana Magallanes-López ◽  
Bingcan Chen ◽  
Clifford Hall

Supercritical carbon dioxide + ethanol (SC-CO2+EtOH) extraction, was employed as a deflavoring method to improve the sensory properties of pea flours. Furthermore, the impacts of particle size along with extraction on volatile profile and sensory attributes of pea flours were investigated using multiple approaches. These included headspace solid-phase microextraction-gas chromatography (HS-SPME-GC), GC-olfactometry (GC-O), and quantitative descriptive analysis (QDA) using a trained sensory panel. Total volatile contents of non-deflavored and deflavored whole pea flour and its fractions were in the range of 7.1 ± 0.3 to 18.1 ± 1.0 µg/g and 0.4 ± 0.1 to 2.7 ± 0.4 µg/g, respectively. The GC-O system showed that the total volatile intensity was in the range of 14.5 to 22.0 and 0 to 3.5, for non-deflavored and deflavored pea flours, respectively. Volatile analyses indicated that 1-hexanol, 1-octanol, 1-nonanol, nonanal, and 2-alkyl methoxypyrazines were major off-aroma compounds. Most off-aroma compounds were not detected in deflavored pea flours. QDA revealed less pea intensity and bitterness of deflavored pea flours. The larger particle size of flours resulted in less off-aroma compounds based on the GC data but more bitterness based on QDA. The SC-CO2+EtOH extraction at optimum conditions and particle size modifications can be a potential technology to improve the organoleptic properties of pulse ingredients.

2000 ◽  
Vol 18 (4) ◽  
pp. 347-371 ◽  
Author(s):  
Henryk Grajek

The literature concerning the adsorption and desorption of environmental impurities from adsorbents by means of liquid, subcritical and supercritical carbon dioxide and the author's work on the subject have been reviewed. The influence of the adsorption and desorption temperature, the pressure and the density of the extraction solvent, the solubility of the adsorbate in the extraction solvent, the activation energy for adsorbate desorption and the particle size of the adsorbent on the adsorbate desorption efficiency by this method were discussed.


2014 ◽  
Vol 17 (3) ◽  
pp. 45-56 ◽  
Author(s):  
Jaime Restrepo Osorio ◽  
Ana Julia Colmenares Dulcey ◽  
Luis E. Mora ◽  
Rubén Albeiro Sánchez Andica

Essential oils from pipilongo seeds (Piper tuberculatum) was extracted using supercritical carbon dioxide. The extraction was performed as a function of particle size of the grinded seeds. The highest yield (2,812%) was obtained with the smallest particle size. The chemical composition analysis  of  the  oil  by  GC-MS  led  to  identify  15  compounds,  some  of  which  are  β-elemene, caryophyllene, β-farnesene, neophytadiene and piperine among others. The microbicide activity of the essential oil was determined by Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC) assays, showing that the growth of the bacteria Staphylococcus aureus and Bacillus subtilis was inhibited, and hence with a possible microbicidal effect, whereas for pseudomonas aeruginosa and Salmonella typhimurium showed no effect on their growth.


Author(s):  
Azreen Ibrahim ◽  
Rosalam Sarbatly

Limonene constitutes 98% of the essential oil obtained from orange peel. Besides being used as fragrances and flavours in the food, perfume and cosmetic industries, limonene is also a good degreasing agent. Supercritical carbon dioxide is an excellent solvent for non-polar compound like limonene but poor solvent for polar compound like α-terpineol. Common practice in supercritical fluid extraction is to change the polarity of supercritical carbon dioxide by employing polar modifiers to increase its solvating power towards polar analytes. Base on this, in the attempt to extract more limonene in orange essential oil, less polar modifiers were added instead. In this study, effects of adding modifiers with different polarity on extraction of aroma compounds (limonene, linalool and α-terpineol) from Citrus Sinensis L. Osbeck or sweet orange peel were investigated. Supercritical extraction was carried out at defined pressure and temperature for duration of 45 minutes. Concentration of aroma compounds extracted was analysed using GC-MS. The optimum conditions for extraction were observed at 318K and 12MPa. The concentrations of limonene increased significantly by the addition of methanol and slightly with n-heptane. It was also found that n-heptane is effective on supercritical CO2 extractions of linalool and α-terpineol.


2004 ◽  
Vol 93 (4) ◽  
pp. 1083-1090 ◽  
Author(s):  
Jianyuan Hao ◽  
Martin J. Whitaker ◽  
Ben Wong ◽  
Gulay Serhatkulu ◽  
Kevin M. Shakesheff ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document