scholarly journals Polysaccharide Peptide–Induced Virus Resistance Depends on Ca2+ Influx by Increasing the Salicylic Acid Content and Upregulating the Leucine-Rich Repeat Gene in Arabidopsis thaliana

2018 ◽  
Vol 31 (5) ◽  
pp. 516-524 ◽  
Author(s):  
Lei Zhao ◽  
Yujia Chen ◽  
Wen Yang ◽  
Yuanle Zhang ◽  
Wenbao Chen ◽  
...  

Plant viral diseases cause severe economic losses in agricultural production. The development of biosource-derived antiviral agents provides an alternative strategy to efficiently control plant viral diseases. We previously reported that the exogenous application of polysaccharide peptide (PSP) exerts significant inhibitive effects on Tobacco mosaic virus infection in Nicotiana tabacum. In this study, we studied in additional detail the mechanism by which PSP can induce virus resistance in Arabidopsis thaliana. We found that PSP significantly induced Ca2+ influx and increased the accumulation of hydrogen peroxide and salicylic acid (SA) in the A. thaliana cells. A gene with a toll interleukin 1 receptor-nucleotide binding site-leucine-rich repeat domain (LRR) was obtained by RNA sequencing in combination with the screening of the gene-deletion mutants of A. thaliana. The LRR gene was deleted, and the inductive response of A. thaliana to PSP was significantly attenuated after mutation. After the heterologous overexpression of the LRR gene in N. benthamiana, the SA content and PR1 gene expression in N. benthamiana were significantly increased. Through analyses of the LRR gene expression and the ability of A. thaliana to resist Cucumber mosaic virus following the treatments of PSP and PSP + ethyleneglycol-bis (beta-aminoethylether)-N,N’-tetraacetic acid, it was shown that PSP enhanced the virus resistance of A. thaliana by inducing Ca2+ influx and subsequently improving expression of the LRR gene, which further increased the SA content.

2001 ◽  
Vol 14 (6) ◽  
pp. 715-724 ◽  
Author(s):  
Liang-Hui Ji ◽  
Shou-Wei Ding

The Cucumber mosaic virus (CMV)-encoded 2b protein (Cmv2b) is a nuclear protein that suppresses transgene RNA silencing in Nicotiana benthamiana. Cmv2b is an important virulence determinant but nonessential for systemic spread in N. glutinosa, in contrast to its indispensable role for systemic infections in cucumber. Here, we report that Cmv2b became essential for systemic infections in older N. glutinosa plants or in young seedlings pre-treated with salicylic acid (SA). Expression of Cmv2b from the genome of either CMV or Tobacco mosaic virus significantly reduced the inhibitory effect of SA on virus accumulation in inoculated leaves and systemic leaves. A close correlation is demonstrated between Cmv2b expression and a reduced SA-dependent induction of the alternative oxidase gene, a component of the recently proposed SA-regulated antiviral defense. These results collectively reveal a novel activity of Cmv2b in the inhibition of SA-mediated virus resistance. We used a N. tabacum line expressing a bacterial nahG transgene that degrades SA to provide evidence for a Cmv2b-sensitive antiviral defense mechanism in tobacco in which SA acts as a positive modifier but not as an essential component. We propose that SA induces virus resistance by potentiating a RNA-silencing antiviral defense that is targeted by Cmv2b.


2007 ◽  
Vol 20 (4) ◽  
pp. 358-370 ◽  
Author(s):  
Chunling Yang ◽  
Rong Guo ◽  
Fei Jie ◽  
Dan Nettleton ◽  
Jiqing Peng ◽  
...  

Virus-infected leaf tissues comprise a heterogeneous mixture of cells at different stages of infection. The spatial and temporal relationships between sites of virus accumulation and the accompanying host responses, such as altered host gene expression, are not well defined. To address this issue, we utilized Turnip mosaic virus (TuMV) tagged with the green fluorescent protein to guide the dissection of infection foci into four distinct zones. The abundance of Arabidopsis thaliana mRNA transcripts in each of the four zones then was assayed using the Arabidopsis ATH1 GeneChip oligonucleotide microarray (Affymetrix). mRNA transcripts with significantly altered expression profiles were determined across gradients of virus accumulation spanning groups of cells in and around foci at different stages of infection. The extent to which TuMV-responsive genes were up- or downregulated primarily correlated with the amount of virus accumulation regardless of gene function. The spatial analysis also allowed new suites of coordinately regulated genes to be identified that are associated with chloroplast functions (decreased), sulfate assimilation (decreased), cell wall extensibility (decreased), and protein synthesis and turnover (induced). The functions of these downregulated genes are consistent with viral symptoms, such as chlorosis and stunted growth, providing new insight into mechanisms of pathogenesis.


PLoS Genetics ◽  
2013 ◽  
Vol 9 (12) ◽  
pp. e1004015 ◽  
Author(s):  
Kenichi Tsuda ◽  
Akira Mine ◽  
Gerit Bethke ◽  
Daisuke Igarashi ◽  
Christopher J. Botanga ◽  
...  

2008 ◽  
Vol 21 (4) ◽  
pp. 424-432 ◽  
Author(s):  
Martin John Evers Wubben ◽  
Jing Jin ◽  
Thomas Josef Baum

Compatible plant–nematode interactions involve the formation of an elaborate feeding site within the host root that requires the evasion of plant defense mechanisms by the parasite. Little is known regarding plant defense signaling pathways that limit nematode parasitism during a compatible interaction. Therefore, we utilized Arabidopsis thaliana mutants perturbed in salicylic acid (SA) biosynthesis or signal transduction to investigate the role of SA in inhibiting parasitism by the beet cyst nematode Heterodera schachtii. We determined that SA-deficient mutants (sid2-1, pad4-1, and NahG) exhibited increased susceptibility to H. schachtii. In contrast, SA-treated wild-type plants showed decreased H. schachtii susceptibility. The npr1-2 and npr1-3 mutants, which are impaired in SA signaling, also showed increased susceptibility to H. schachtii, whereas the npr1-suppressor mutation sni1 showed decreased susceptibility. Constitutive pathogenesis-related (PR) gene-expressing mutants (cpr1 and cpr6) did not show altered susceptibility to H. schachtii; however, constitutive PR gene expression was restricted to cpr1 shoots with wild-type levels of PR-1 transcript present in cpr1 roots. Furthermore, we determined that H. schachtii infection elicits SA-independent PR-2 and PR-5 induction in wild-type roots, while PR-1 transcript and total SA levels remained unaltered. This was in contrast to shoots of infected plants where PR-1 transcript abundance and total SA levels were elevated. We conclude that SA acts via NPR1 to inhibit nematode parasitism which, in turn, is negatively regulated by SNI1. Our results show an inverse correlation between root basal PR-1 expression and plant susceptibility to H. schachtii and suggest that successful cyst nematode parasitism may involve a local suppression of SA signaling in roots.


2019 ◽  
Vol 20 (10) ◽  
pp. 2538 ◽  
Author(s):  
Mazen Alazem ◽  
Kook-Hyung Kim ◽  
Na-Sheng Lin

The RNA silencing pathways modulate responses to certain stresses, and can be partially tuned by several hormones such as salicylic acid (SA) and abscisic acid (ABA). Although SA and ABA are often antagonistic and often modulate different stress responses, they have similar effects on virus resistance, which are partially achieved through the antiviral RNA silencing pathway. Whether they play similar roles in regulating the RNA silencing pathway is unclear. By employing coexpression and promoter analyses, we found that some ABA- and SA-related transcription factors (TFs) are coexpressed with several AGO, DCL, and RDR genes, and have multiple binding sites for the identified TFs in the queried promoters. ABA and SA are antagonistic with respect to the expression of AGO1 and RDRs because ABA was able to induce these genes only in the SA mutant. Nevertheless, both hormones showed similarities in the regulation of other genes, for example, the induction of AGO2 by ABA was SA-dependent, indicating that ABA acts upstream of SA in this regulation. We inferred that the similar effects of ABA and SA on some genes resulted in the redundancy of their roles in resistance to bamboo mosaic virus, but that the two hormones are antagonistic with respect to other genes unrelated to their biosynthesis pathways.


Cell ◽  
1994 ◽  
Vol 78 (6) ◽  
pp. 1101-1115 ◽  
Author(s):  
Steve Whitham ◽  
S.P. Dinesh-Kumar ◽  
Doil Choi ◽  
Reinhard Hehl ◽  
Catherine Corr ◽  
...  

2005 ◽  
Vol 18 (5) ◽  
pp. 428-434 ◽  
Author(s):  
Carl N. Mayers ◽  
Kian-Chung Lee ◽  
Catherine A. Moore ◽  
Sek-Man Wong ◽  
John P. Carr

Salicylic acid (SA)-induced resistance to Cucumber mosaic virus (CMV) in tobacco (Nicotiana tabacum) results from inhibition of systemic virus movement and is induced via a signal transduction pathway that also can be triggered by antimycin A, an inducer of the mitochondrial enzyme alternative oxidase (AOX). In Arabidopsis thaliana, inhibition of CMV systemic movement also is induced by SA and antimycin A. These results indicate that the mechanisms underlying induced resistance to CMV in tobacco and A. thaliana are very similar. In contrast to the situation in tobacco and A. thaliana, in squash (Cucurbita pepo), SA-induced resistance to CMV results from inhibited virus accumulation in directly inoculated tissue, most likely through inhibition of cell-to-cell movement. Furthermore, neither of the AOX inducers antimycin A or KCN induced resistance to CMV in squash. Additionally, AOX inhibitors that compromise SAinduced resistance to CMV in tobacco did not inhibit SAinduced resistance to the virus in squash. The results show that different host species may use significantly different approaches to resist infection by the same virus. These findings also imply that caution is required when attempting to apply findings on plant-virus interactions from model systems to a wider range of host species.


2003 ◽  
Vol 16 (8) ◽  
pp. 681-688 ◽  
Author(s):  
Sheetal Golem ◽  
James N. Culver

In this study, mRNA profiles generated from cDNA microarrays were used to identify gene expression changes in Arabidopsis thaliana ecotype Shahdara infected with Tobacco mosaic virus (TMV). Shahdara is a susceptible TMV host, permitting rapid accumulations of virus in both inoculated and systemic tissues, accompanied by defined disease symptoms that include stunting, necrosis, and leaf curling. Gene expression profiles were monitored in whole tissues of inoculated leaves at four days postinoculation (dpi) and in systemically infected leaves at 14 dpi. Microarrays contained cDNAs representing between 8,000 and 10,000 Arabidopsis genes. Expression analysis identified 68 genes that displayed significant and consistent changes in expression levels, either up or down, in either TMV inoculated or systemically infected tissues, or both. Identified TMV-responsive genes encode a diverse array of functional proteins that include transcription factors, antioxidants, metabolic enzymes, and transporters. Thus, the TMV infection process has a significant impact on a wide array of cellular processes that likely reflect the biochemical and physiological changes involved in the development of this disease syndrome.


Sign in / Sign up

Export Citation Format

Share Document