scholarly journals Two Agrobacterium tumefaciens CheW Proteins Are Incorporated into One Chemosensory Pathway with Different Efficiencies

2018 ◽  
Vol 31 (4) ◽  
pp. 460-470 ◽  
Author(s):  
Zhiwei Huang ◽  
Qingxuan Zhou ◽  
Pan Sun ◽  
Jing Yang ◽  
Minliang Guo

Agrobacterium tumefaciens is the agent that causes crown gall tumor disease on more than 140 species of dicotyledonous plants. Chemotaxis of A. tumefaciens toward the wound sites of the host plant is the first step to recognize the host. CheW is a coupling protein that bridges the histidine kinase CheA and the chemoreceptors to form the chemotaxis core signaling complex and plays a crucial role in the assembly and function of the large chemosensory array. Unlike all previously reported chemotaxis systems, A. tumefaciens has only one major che operon but two cheW homologs (atu2075 as cheW1 and atu2617 as cheW2) on unlinked loci. The in-frame deletion of either cheW gene significantly affects A. tumefaciens chemotaxis but does not abolish the chemotaxis, unless both cheW genes were deleted. The effect of cheW2 deletion on the chemotaxis is more severe than that of cheW1 deletion. Either CheW can interact with CheA and couple it to the cell poles. The promoter activity of cheW2 is always higher than that of cheW1 under all of the tested conditions. When two cheW genes were adjusted to the same expression level by using the identical promoter, the difference between the effects of two CheW proteins on the chemotaxis still existed. Therefore, we envision that both the different molecular ratio of two CheW proteins in cell and the different affinities of two CheW proteins with CheA and chemoreceptors result in the efficiency difference of two CheW proteins in functioning in the large chemosensory array.

2018 ◽  
Vol 200 (10) ◽  
pp. e00052-18 ◽  
Author(s):  
Xueye Ding ◽  
Qiang He ◽  
Fenglin Shen ◽  
Frederick W. Dahlquist ◽  
Xiqing Wang

ABSTRACT The histidine kinase CheA plays a central role in signal integration, conversion, and amplification in the bacterial chemotaxis signal transduction pathway. The kinase activity is regulated in chemotaxis signaling complexes formed via the interactions among CheA's regulatory domain (P5), the coupling protein CheW, and transmembrane chemoreceptors. Despite recent advancements in the understanding of the architecture of the signaling complex, the molecular mechanism underlying this regulation remains elusive. An interdomain linker that connects the catalytic (P4) and regulatory domains of CheA may mediate regulatory signals from the P5-CheW-receptor interactions to the catalytic domain. To investigate whether this interdomain linker is capable of both activating and inhibiting CheA, we performed in vivo screens to search for P4-P5 linker mutations that result in different CheA autokinase activities. Several CheA variants were identified with kinase activities ranging from 30% to 670% of the activity of wild-type CheA. All of these CheA variants were defective in receptor-mediated kinase activation, indicating that the natural receptor-mediated signal transmission pathway was simultaneously affected by these mutations. The altered P4-P5 linkers were sufficient for making significant changes in the kinase activity even in the absence of the P5 domain. Therefore, the interdomain linker is an active module that has the ability to impose regulatory effects on the catalytic activity of the P4 domain. These results suggest that chemoreceptors may manipulate the conformation of the P4-P5 linker to achieve CheA regulation in the platform of the signaling complex. IMPORTANCE The molecular mechanism underlying kinase regulation in bacterial chemotaxis signaling complexes formed by the regulatory domain of the histidine kinase CheA, the coupling protein CheW, and chemoreceptors is still unknown. We isolated and characterized mutations in the interdomain linker that connects the catalytic and regulatory domains of CheA and found that the linker mutations resulted in different CheA autokinase activities in the absence and presence of the regulatory domain as well as a defect in receptor-mediated kinase activation. These results demonstrate that the interdomain linker is an active module that has the ability to impose regulatory effects on CheA activity. Chemoreceptors may manipulate the conformation of this interdomain linker to achieve CheA regulation in the platform of the signaling complex.


2019 ◽  
Vol 20 (11) ◽  
pp. 1046-1051 ◽  
Author(s):  
Przemysław Gajda-Morszewski ◽  
Klaudyna Śpiewak-Wojtyła ◽  
Maria Oszajca ◽  
Małgorzata Brindell

Lactoferrin was isolated and purified for the first time over 50-years ago. Since then, extensive studies on the structure and function of this protein have been performed and the research is still being continued. In this mini-review we focus on presenting recent scientific efforts towards the elucidation of the role and therapeutic potential of lactoferrin saturated with iron(III) or manganese(III) ions. The difference in biological activity of metal-saturated lactoferrin vs. the unmetalated one is emphasized. The strategies for oral delivery of lactoferrin, are also reviewed, with particular attention to the metalated protein.


2021 ◽  
Vol 29 (1) ◽  
pp. 230949902199606
Author(s):  
Takeshi Mochizuki ◽  
Koichiro Yano ◽  
Katsunori Ikari ◽  
Ken Okazaki

Purpose: This study investigated the clinical effects of different patellar components without being affected by the femoral component design in total knee arthritis (TKA) for patients with knee osteoarthritis (OA). Methods: In total, 48 patients with OA who met the criteria of the American College of Rheumatology for OA were enrolled and randomly assigned in a 1:1 ratio to two groups according to the usage of patellar component design for TKA (medialized dome type [dome group] or medialized anatomic type [anatomic group]). To evaluate the clinical outcomes for TKA, knee range of motion (ROM), pain intensity of 0–100 mm visual analog scale (pain VAS), and the Japanese Knee Osteoarthritis Measure (JKOM) score were obtained at baseline and year 1. Results: The difference in knee ROM, pain VAS, or total JKOM score at year 1 was not significant between the dome and anatomic groups ( p = 0.398, 0.733 and 0.536, respectively). Moreover, similar results were obtained for changes in knee ROM, pain VAS, or total JKOM scores from baseline. In both groups, the pain VAS and total JKOM scores were significantly improved at year 1. Conclusion: Both dome and anatomic groups in TKA are significantly effective for pain and function using the JKOM score. However, their efficacy did not differ, according to the JKOM score. Results of this study are rare information focusing on the patellar component design and provide one of the insights into the TKA clinical management.


2021 ◽  
Vol 11 (9) ◽  
pp. 4048
Author(s):  
Javier A. Linares-Pastén ◽  
Lilja Björk Jonsdottir ◽  
Gudmundur O. Hreggvidsson ◽  
Olafur H. Fridjonsson ◽  
Hildegard Watzlawick ◽  
...  

The structures of glycoside hydrolase family 17 (GH17) catalytic modules from modular proteins in the ndvB loci in Pseudomonas aeruginosa (Glt1), P. putida (Glt3) and Bradyrhizobium diazoefficiens (previously B. japonicum) (Glt20) were modeled to shed light on reported differences between these homologous transglycosylases concerning substrate size, preferred cleavage site (from reducing end (Glt20: DP2 product) or non-reducing end (Glt1, Glt3: DP4 products)), branching (Glt20) and linkage formed (1,3-linkage in Glt1, Glt3 and 1,6-linkage in Glt20). Hybrid models were built and stability of the resulting TIM-barrel structures was supported by molecular dynamics simulations. Catalytic amino acids were identified by superimposition of GH17 structures, and function was verified by mutagenesis using Glt20 as template (i.e., E120 and E209). Ligand docking revealed six putative subsites (−4, −3, −2, −1, +1 and +2), and the conserved interacting residues suggest substrate binding in the same orientation in all three transglycosylases, despite release of the donor oligosaccharide product from either the reducing (Glt20) or non-reducing end (Glt1, Gl3). Subsites +1 and +2 are most conserved and the difference in release is likely due to changes in loop structures, leading to loss of hydrogen bonds in Glt20. Substrate docking in Glt20 indicate that presence of covalently bound donor in glycone subsites −4 to −1 creates space to accommodate acceptor oligosaccharide in alternative subsites in the catalytic cleft, promoting a branching point and formation of a 1,6-linkage. The minimum donor size of DP5, can be explained assuming preferred binding of DP4 substrates in subsite −4 to −1, preventing catalysis.


2001 ◽  
Vol 281 (5) ◽  
pp. H1938-H1945 ◽  
Author(s):  
Chari Y. T. Hart ◽  
John C. Burnett ◽  
Margaret M. Redfield

Anesthetic regimens commonly administered during studies that assess cardiac structure and function in mice are xylazine-ketamine (XK) and avertin (AV). While it is known that XK anesthesia produces more bradycardia in the mouse, the effects of XK and AV on cardiac function have not been compared. We anesthetized normal adult male Swiss Webster mice with XK or AV. Transthoracic echocardiography and closed-chest cardiac catheterization were performed to assess heart rate (HR), left ventricular (LV) dimensions at end diastole and end systole (LVDd and LVDs, respectively), fractional shortening (FS), LV end-diastolic pressure (LVEDP), the time constant of isovolumic relaxation (τ), and the first derivatives of LV pressure rise and fall (dP/d t max and dP/d t min, respectively). During echocardiography, HR was lower in XK than AV mice (250 ± 14 beats/min in XK vs. 453 ± 24 beats/min in AV, P < 0.05). Preload was increased in XK mice (LVDd: 4.1 ± 0.08 mm in XK vs. 3.8 ± 0.09 mm in AV, P < 0.05). FS, a load-dependent index of systolic function, was increased in XK mice (45 ± 1.2% in XK vs. 40 ± 0.8% in AV, P < 0.05). At LV catheterization, the difference in HR with AV (453 ± 24 beats/min) and XK (342 ± 30 beats/min, P < 0.05) anesthesia was more variable, and no significant differences in systolic or diastolic function were seen in the group as a whole. However, in XK mice with HR <300 beats/min, LVEDP was increased (28 ± 5 vs. 6.2 ± 2 mmHg in mice with HR >300 beats/min, P < 0.05), whereas systolic (LV dP/d t max: 4,402 ± 798 vs. 8,250 ± 415 mmHg/s in mice with HR >300 beats/min, P < 0.05) and diastolic (τ: 23 ± 2 vs. 14 ± 1 ms in mice with HR >300 beats/min, P < 0.05) function were impaired. Compared with AV, XK produces profound bradycardia with effects on loading conditions and ventricular function. The disparate findings at echocardiography and LV catheterization underscore the importance of comprehensive assessment of LV function in the mouse.


1994 ◽  
Vol 14 (10) ◽  
pp. 6907-6914
Author(s):  
P J Morris ◽  
T Theil ◽  
C J Ring ◽  
K A Lillycrop ◽  
T Moroy ◽  
...  

The Brn-3a, Brn-3b, and Brn-3c POU family transcription factors are closely related to one another and are members of the group IV subfamily of POU factors. Here we show that despite this close relationship, the factors have different effects on the activity of a target promoter: Brn-3a and Brn-3c stimulate the promoter whereas Brn-3b represses it. Moreover, Brn-3b can antagonize the stimulatory effect of Brn-3a on promoter activity and can also inhibit promoter activation by the Oct-2.1 POU factor. The difference in the transactivation activities of Brn-3a and Brn-3b is dependent upon the C-terminal region containing the POU domain of the two proteins, since exchange of this domain between the two factors converts Brn-3a into a repressor and Brn-3b into an activator.


1996 ◽  
Vol 271 (2) ◽  
pp. G377-G385 ◽  
Author(s):  
D. M. Christie ◽  
P. A. Dawson ◽  
S. Thevananther ◽  
B. L. Shneider

An apical sodium-dependent bile acid transporter (ASBT) has recently been cloned and characterized in the rat ileum. Northern and Western blotting revealed both the ASBT mRNA and protein in rat kidney. The coding sequence of the kidney transcript was found to be identical to the previously cloned ileal ASBT. Indirect immunofluorescence studies localized the ASBT protein to the apical membrane of the renal proximal convoluted tubule. Kinetic analysis of sodium-dependent taurocholate uptake using membrane vesicles revealed a similar Michaelis-Menten constant value for taurocholate in the kidney and intestine. ASBT protein and function were present in the kidney but not the ileum from 7-day-old rats. On postnatal day 7, there was a sevenfold increase in ASBT steady-state mRNA levels in the kidney relative to the ileum, yet nuclear run-on assays revealed that the nascent transcription rates at this age were virtually the same. This suggests that the difference in the neonatal expression of the ASBT gene in the kidney and ileum may be in part due to differences in mRNA stability.


2020 ◽  
Vol 48 (4) ◽  
pp. 1419-1432 ◽  
Author(s):  
Edmund R.S. Kunji ◽  
Jonathan J. Ruprecht

For more than 40 years, the oligomeric state of members of the mitochondrial carrier family (SLC25) has been the subject of debate. Initially, the consensus was that they were dimeric, based on the application of a large number of different techniques. However, the structures of the mitochondrial ADP/ATP carrier, a member of the family, clearly demonstrated that its structural fold is monomeric, lacking a conserved dimerisation interface. A re-evaluation of previously published data, with the advantage of hindsight, concluded that technical errors were at the basis of the earlier dimer claims. Here, we revisit this topic, as new claims for the existence of dimers of the bovine ADP/ATP carrier have emerged using native mass spectrometry of mitochondrial membrane vesicles. However, the measured mass does not agree with previously published values, and a large number of post-translational modifications are proposed to account for the difference. Contrarily, these modifications are not observed in electron density maps of the bovine carrier. If they were present, they would interfere with the structure and function of the carrier, including inhibitor and substrate binding. Furthermore, the reported mass does not account for three tightly bound cardiolipin molecules, which are consistently observed in other studies and are important stabilising factors for the transport mechanism. The monomeric carrier has all of the required properties for a functional transporter and undergoes large conformational changes that are incompatible with a stable dimerisation interface. Thus, our view that the native mitochondrial ADP/ATP carrier exists and functions as a monomer remains unaltered.


Sign in / Sign up

Export Citation Format

Share Document