Agrobacterium rhizogenes-Transformed Roots of Medicago truncatula for the Study of Nitrogen-Fixing and Endomycorrhizal Symbiotic Associations

2001 ◽  
Vol 14 (6) ◽  
pp. 695-700 ◽  
Author(s):  
Aurélien Boisson-Dernier ◽  
Mireille Chabaud ◽  
Fernand Garcia ◽  
Guillaume Bécard ◽  
Charles Rosenberg ◽  
...  

Medicago truncatula, a diploid autogamous legume, is currently being developed as a model plant for the study of root endosymbiotic associations, including nodulation and mycorrhizal colonization. An important requirement for such a plant is the possibility of rapidly introducing and analyzing chimeric gene constructs in root tissues. For this reason, we developed and optimized a convenient protocol for Agrobacterium rhizogenes-mediated transformation of M. truncatula. This unusual protocol, which involves the inoculation of sectioned seedling radicles, results in rapid and efficient hairy root organogenesis and the subsequent development of vigorous “composite plants.” In addition, we found that kanamycin can be used to select for the co-transformation of hairy roots directly with gene constructs of interest. M. truncatula composite plant hairy roots have a similar morphology to normal roots and can be nodulated successfully by their nitrogen-fixing symbiotic partner, Sinorhizobium meliloti. Furthermore, spatiotemporal expression of the Nod factor-responsive reporter p MtENOD11-gusA in hairy root epidermal tissues is indistinguishable from that observed in Agrobacterium tumefaciens-transformed lines. M. truncatula hairy root explants can be propagated in vitro, and we demonstrate that these clonal lines can be colonized by endomycorrhizal fungi such as Glomus intraradices with the formation of arbus-cules within cortical cells. Our results suggest that M. truncatula hairy roots represent a particularly attractive system with which to study endosymbiotic associations in transgenically modified roots.

2003 ◽  
Vol 81 (7) ◽  
pp. 645-656 ◽  
Author(s):  
Karine Labour ◽  
Mario Jolicoeur ◽  
Marc St-Arnaud

Variability in growth and nutritional dynamics of in vitro tomato hairy root lines and their relationship with responsiveness to mycorrhizal colonization were studied. Four tomato cultivars were transformed with three Agrobacterium rhizogenes strains to obtain several hairy root lines, which were compared for growth and receptivity to Glomus intraradices. Four transformed hairy root lines were further characterized and compared with excised roots of the nontransformed tomato cultivar 'Cobra' and with Ri-T-DNA carrot hairy roots. Lines were compared during 4 months on minimal medium in terms of growth, nutrient uptake, and mycorrhizal colonization. In a subexperiment, the cultures were grown on a modified minimal medium to assess the contribution of initial inorganic phosphate concentration in mycorrhizal susceptibility of the three initially nonreceptive lines. On minimal medium, growth and nutrient uptake rates were highly correlated, but both were unrelated to mycorrhizal receptiveness. All the lines successfully established the symbiosis when the initial phosphate concentration was significantly reduced. No association was found between the origin of lines from the different tomato cultivar – bacterial strain combinations and the absence of symbiosis establishment on minimal medium. Decrease of inorganic phosphate concentration at the beginning of the culture was a key factor involved in precolonization steps of mycorrhizal symbiosis.Key words: Glomus intraradices, hairy roots, Lycopersicon esculentum, mycorrhizal responsiveness, root nutrition, inorganic phosphate.


2011 ◽  
Vol 46 (9) ◽  
pp. 1070-1075 ◽  
Author(s):  
Ricardo Luís Mayer Weber ◽  
Maria Helena Bodanese‑Zanettini

The objective of this work was to perform the screening of soybean genotypes as to their ability to respond to the induction of hairy roots by Agrobacterium rhizogenes‑mediated transformation. Four Brazilian soybean cultivars (BRSMG 68 Vencedora, BRS 137, Embrapa 48, and MG/BR 46 Conquista) and two North American ones adapted to Brazilian cropping conditions (Bragg and IAS‑5) were screened for their capacity to respond to A. rhizogenes in protocols for in vitro hairy root culture and ex vitro composite plant production. Four‑day‑old seedlings with uniform size were injected with A. rhizogenes harboring the plasmid p35S‑GFP. Seedlings expressing green fluorescent protein (GFP) in at least one hairy root were used to determine the transformation frequency. Using an axenic in vitro protocol, excised cotyledons from four‑day‑old seedlings were infected with A. rhizogenes harboring the pCAMBIA1301 plasmid, containing the gusA reporter gene. The transformation frequency and the number of days for hairy root emergence after bacterial infection (DAI) were evaluated. The transformation frequency and DAI varied according to the genotype. Cultivars MG/BR 46 Conquista and BRSMG 68 Vencedora are more susceptible to A. rhizogenes and can be recommended for transformation experiments.


2014 ◽  
Vol 70 (4) ◽  
pp. 261-265 ◽  
Author(s):  
Agnieszka Pietrosiuk ◽  
Mirosława Furmanowa

Six groups of untransformed and hairy root cultures of <em>Catharunthus roseus</em> (L.) G. Don were established. <em>Agrobacterium rhizogenes</em> strains: ATCC 15834, LBA 9403, and TR 105 were used for infection of the 3-week old rooted plantlets of <em>C. roseus</em>. The highest contents of examined indole alkaloids were found in: roots of intact plants - yohimbine and serpentine; in hairy roots - catharanthine. Vinblastine and ajmalicine were detected in untransformed roots of plants regenerated in vitro, and transferred to the soil for 5 months.


Agronomy ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 975
Author(s):  
Ye-Eun Park ◽  
Chang-Ha Park ◽  
Hyeon-Ji Yeo ◽  
Yong-Suk Chung ◽  
Sang-Un Park

Peanut (Arachis hypogaea) is a crop that can produce resveratrol, a compound with various biological properties, such as those that exert antioxidant, anticancer, and anti-inflammatory effects. In this study, trans-resveratrol was detected in the roots, leaves, and stems of tan and purple seed coat peanuts (Arachis hypogaea) cultivated in a growth chamber. Both cultivars showed higher levels of resveratrol in the roots than the other plant parts. Thus, both cultivars were inoculated with Agrobacterium rhizogenes, in vitro, to promote hairy root development, thereby producing enhanced levels of t-resveratrol. After 1 month of culture, hairy roots from the two cultivars showed higher levels of fresh weight than those of seedling roots. Furthermore, both cultivars contained higher t-resveratrol levels than those of their seedling roots (6.88 ± 0.21 mg/g and 28.07 ± 0.46 mg/g, respectively); however, purple seed coat peanut hairy roots contained higher t-resveratrol levels than those of tan seed coat peanut hairy roots, ranging from 70.16 to 166.76 mg/g and from 46.61 to 54.31 mg/g, respectively. The findings of this study indicate that peanut hairy roots could be a good source for t-resveratrol production due to their rapid growth, high biomass, and substantial amount of resveratrol.


Biologia ◽  
2014 ◽  
Vol 69 (7) ◽  
Author(s):  
Elnaz Nourozi ◽  
Bahman Hosseini ◽  
Abbas Hassani

AbstractHairy root culture system is a valuable tool to study the characteristics of gene expression, gene function, root biology, biochemical properties and biosynthesis pathways of secondary metabolites. In the present study, hairy roots were established in Anise hyssop (Agastache foeniculum) via Agrobacterium rhizogenes. Three strains of Agrobacterium rhizogenes (A4, A7 and 9435), were used for induction of hairy roots in four various explants (hypocotyl, cotyledon, one-month-old leaf and five-month-old leaf) of Anise hyssop. The highest frequency of transformation was achieved using A4 strain in one-month-old leaves (51.1%). The transgenic states of hairy root lines were confirmed by PCR (Polymerase chain reaction) method. High performance liquid chromatography analysis revealed that the production of rosmarinic acid (RA) in transformed roots of A. foeniculum was almost 4-fold higher than that of the non-transformed roots. In a separate experiment, hairy roots obtained from one-month-old leaves inoculated with A4 strain, were grown in liquid medium and the effects of different concentrations of salicylic acid (0.0, 0.01, 0.1 and 1 mM) and chitosan (0, 50, 100 and 150 mg L−1) (as elicitor) and sucrose (20, 30, 40 and 50 g L−1) on the growth of hairy roots were evaluated. The results showed that, 30 g L−1 sucrose and 100 mg L−1 chitosan increased the biomass of hairy root cultures and application of salicylic acid reduced the growth of hairy roots compared with control roots.


2016 ◽  
Vol 58 (1) ◽  
pp. 113-118 ◽  
Author(s):  
Żaneta Michalec-Warzecha ◽  
Laura Pistelli ◽  
Francesca D’Angiolillo ◽  
Marta Libik-Konieczny

Abstract Leaves and internodes from Stevia rebaudiana Bertoni plants growing in different conditions were used for transformation with two strains of Agrobacterium rhizogenes: ATCC 15384 and LBA 9402. Hairy roots formation was observed and the percentage of the transformed explants depended on the type of explant, time of inoculation and inoculum concentration. Inoculation of explants from ex vitro and in vitro plants with LBA 9402 strain led to higher efficiency of transformation than inoculation with ATCC 15384 strain. Growth rate of hairy roots in liquid culture was assessed under light and dark conditions. It was found that the growth of hairy roots decreased significantly under light conditions. Transformation of hairy roots growing in different culture conditions was confirmed at the molecular level using PCR method with primers constructed against rolB and rolC genes from A. rhizogenes.


2021 ◽  
Vol 07 ◽  
Author(s):  
Chang-Qi Hao ◽  
Shuai-Run Wang ◽  
Yi Wang ◽  
Xin-Yi Hou ◽  
Ya-Xuan Jiang ◽  
...  

Background: Hairy root culture has been widely used in the production of metabolites in dicotyledons, and a large number of food crops and medicinal plants in monocotyledons need to be developed, but there are many difficulties in the induction of hairy roots in monocotyledons. The purpose of this paper is to introduce the inducing methods, influencing factors and application of hairy roots in monocotyledons, and to promote the development of hairy root system in monocotyledons. Methods: The mechanism of action of Agrobacterium rhizogenes and the current situation of hairy root induction, induction methods and influencing factors of monocotyledons were summarized so as to provide convenience for efficient acquisition of hairy root of monocotyledons. Results: Monocotyledons are not easy to produce phenols, cells are prone to lignification, adverse differentiation and selective response to Agrobacterium rhizogenes strains. It is proposed that before induction, plant varieties and explants should be selected, and different infection strains should be screened. In the process of hairy root induction, exogenous inducers such as acetosyringone can be added. Although these factors can provide some help for the induction of hairy roots in monocotyledons, we still need to pay attention to the disadvantages of monocotyledons from dicotyledons at the cellular level. Conclusion: A large number of food crops and medicinal plants are monocotyledons. Hairy root culture can be used to help the breeding and production of medicinal substances. Therefore, it is necessary to pay attention to the selection of varieties and explants, the selection of Agrobacterium rhizogenes and the addition of acetosyringone in the process of hairy root induction so as to improve the production efficiency and facilitate the development and utilization of monocotyledons.


2000 ◽  
Vol 28 (6) ◽  
pp. 790-791 ◽  
Author(s):  
K. Skorupińska-Tudek ◽  
V. S. Hung ◽  
O. Olszowska ◽  
M. Furmanowa ◽  
T. Chojnacki ◽  
...  

Long-chain polyisoprenoid alcohols built from several up to more than 100 isoprenoid units are common constituents of all living organisms. They were found mostly in plants, bacteria, yeasts and mammalian cells. In vitro hairy root culture of Coluria geoides was obtained from plants transformed with Agrobacterium rhizogenes. Growth was optimal at 0.75% (w/v) glucose and at 22 °C. Dry samples of roots were extracted and lipid content was analysed by HPLC. According to our estimation, polyprenols are accumulated in roots of C. geoides cultivated in vitro as a mixture of several prenologues with the dominating prenol composed of 16 isoprenoid units. The content of polyprenols in tissue was approx. 300 μg/g of dry weight.


Sign in / Sign up

Export Citation Format

Share Document