scholarly journals Colletotrichum lindemuthianum Races Prevalent on Dry Beans in North Dakota and Potential Sources of Resistance

Plant Disease ◽  
2011 ◽  
Vol 95 (4) ◽  
pp. 408-412 ◽  
Author(s):  
Rubella S. Goswami ◽  
Luis E. del Rio-Mendoza ◽  
Robin S. Lamppa ◽  
Jeff Prischmann

Anthracnose caused by Colletotrichum lindemuthianum is one of the most important diseases of dry edible beans in the major production areas worldwide. This pathogen is highly variable, with numerous races. Disease management relies heavily on genetic resistance and use of clean seed. Genetic resistance is controlled by major resistance genes conferring protection against specific races of the pathogen. Therefore, knowledge of the pathogen population in a region is essential for effective screening of germplasm. Surveys were conducted for more than 6 years in North Dakota, the largest dry-bean-growing state in the United States, and seed samples submitted for certification were assessed to identify the C. lindemuthianum races prevalent in the region. A collection of commercial cultivars from different market classes of dry bean was also screened for resistance to these races. Disease incidence was found to be low in most years. However, in addition to the previously reported races of anthracnose 7, 73, and 89, two new races, 1153 and 1161, previously never reported in the United States, were identified and the commercial cvs. Montcalm, Avalanche, Vista, and Sedona where found to possess resistance to these races.

HortScience ◽  
2011 ◽  
Vol 46 (3) ◽  
pp. 343-344
Author(s):  
Jeff Olsen

In the mid-1980s, eastern filbert blight (EFB) fungus, Anisogramma anomala (Peck) E. Müller, was discovered in Oregon's main hazelnut-producing region and now is present throughout the hazelnut-producing area. Oregon State University's (OSU) Hazelnut Breeding Program responded by developing EFB-resistant cultivars, the first of which was released in 2005. The breeding program has also selected for other beneficial traits such as uniform early nut maturation, larger kernel size, and improved kernel quality. A 2008 OSU economic study on the costs of establishing and producing hazelnuts showed that the EFB-resistant cultivars enhanced economic viability of orchards, increasing cumulative cash flow during the 12-year establishment period by $12,243 per hectare. Several completely resistant cultivars have been released from the OSU Hazelnut Breeding program, all of which have ‘Gasaway’ as a resistance source, which transmits a dominant allele at a single locus that provides resistance to EFB. Additional EFB-resistant genotypes have also been identified from a diversity of origins that are being integrated into the OSU breeding program to produce new cultivars expressing multiple sources of genetic resistance. Interest in growing hazelnuts is increasing in other parts of the United States; for example, the Arbor Day Foundation began the Hazelnut Research Project in 1996 in Nebraska. A Hybrid Hazelnut Consortium was formed to join the leading hazelnut researchers in the United States. The Consortium's goal is to create a world-leading research and breeding program to develop hazelnuts as a widely adapted, high-yielding, and low-input sustainable crop that is competitive with annual crops for food, feed, or bioenergy. At Rutgers University, there has been a program of breeding and research for hazelnuts for the eastern United States since 1996. The program currently has ≈11,000 hazelnut seedlings undergoing evaluation. The Rutgers program is also looking for winter-hardy genotypes. They have been working closely with OSU to assess the response of OSU hazelnut selections that are resistant to EFB in Oregon when they are exposed to EFB isolates collected from across the eastern United States. This work has demonstrated the need for cultivars to express multiple sources of resistance and has prompted quarantine on importation of hazelnut plants into Oregon from other states where EFB strains may differ. Rutgers is also searching for new sources of resistance to EFB from seedling populations from Europe with the goal of integrating these sources into American germplasm. More effective Integrated Pest Management for EFB-susceptible hazelnut cultivars has been developed by OSU scientists. They recommend a management program that integrates scouting for and pruning infected tissue, fungicidal sprays, and the use of more resistant cultivars. Advances in hazelnut fertilizer management have included descriptions of patterns of nitrogen uptake, distribution, and use using isotopically labeled nitrogen.


Plant Disease ◽  
2002 ◽  
Vol 86 (5) ◽  
pp. 562-562 ◽  
Author(s):  
L. E. del Río ◽  
R. S. Lamppa ◽  
P. L. Gross

Dry bean (Phaseolus vulgaris L. cv. Pintoba) plants showing typical anthracnose symptoms were observed in three commercial fields in North Dakota (Towner, Steele, and Pembina counties) in July 2001. Disease incidence in all fields ranged from 5 to 20%. The fungus was isolated from leaves and pods on potato dextrose agar and identified as Colletotrichum lindemuthianum (Sacc. & Magnus) Lams.-Scrib. (3). Pathogenicity and race identification were determined on a set of 12 standard differentials (2). Three isolates, one from each county, were grown for 7 days in Mathur's medium. Spores were suspended in water and Tween 80 (0.1% vol/vol) and adjusted to 106 spores per ml. Thirty 2-week-old seedlings of each differential were inoculated with each isolate on the adaxial side of the primary leaves using a Paasche airbrush. Inoculated plants were incubated in moist chambers for 5 days at 20°C under 14 h of fluorescent light and then moved back to the greenhouse. Disease reaction was assessed 3 days later. Isolates of C. lindemuthianum races 7 and 73 obtained from J. Kelly (Michigan State University) were used as positive controls. Inoculations were repeated once. All three North Dakota isolates and the positive control for race 73 produced sporulating lesions on the differentials ‘Michelite’, ‘Cornell 49242’, and ‘Mexico 222’. No lesions were observed in the other differentials. An unidentified anthracnose race retrieved from a single plant in 1982 constitutes the first report of the presence of anthracnose in North Dakota (4). In 1992, Michigan breeding materials infected with race 73 were planted in North Dakota (1); upon detection, the infected plants were destroyed and the fields quarantined. The epidemics observed in the 2001 season, developed in sites distant from the places where the Michigan materials were planted and have been associated with a single seed source. To our knowledge, the presence of anthracnose race 73 reported here constitutes the first report of anthracnose in commercial dry bean fields in North Dakota. References: (1) J. D. Kelly et al. Plant Dis. 78:892, 1994. (2) M. A. Pastor-Corrales. Phytopathology 81:694, 1991. (3) B. C. Sutton, The Coelomycetes, CAB International, Wallingford, Oxon, UK, 1980. (4) J. R. Venette and P. A. Donald. Bean Improv. Coop. 26:24, 1983.


2020 ◽  
Vol 100 (1) ◽  
pp. 40-55 ◽  
Author(s):  
Robert L. Conner ◽  
Greg J. Boland ◽  
Chris L. Gillard ◽  
Yongyan Chen ◽  
Xuechan Shan ◽  
...  

Anthracnose, caused by the fungus Colletotrichum lindemuthianum (Sacc. & Magnus) Briosi & Cavara, is one of the most destructive diseases of dry bean (Phaseolus vulgaris L.) in the world. Between 2005 and 2015, commercial fields of dry beans in Manitoba and Ontario were surveyed to determine the frequency of occurrence of races of the anthracnose fungus. Throughout the study, race 73 was most prevalent in Manitoba and Ontario. However, three anthracnose races not previously reported in Canada also were identified. These three new races and four previously identified anthracnose races were used to screen 52 dry bean cultivars, as well as a mung bean and azuki bean cultivar from Ontario, for their seedling reactions to determine their patterns of race resistance. The dry bean cultivars were classified into a total of 19 resistance spectra based on the pattern of seedling reactions to the seven anthracnose races. The most common resistance spectrum was susceptible to the majority of the anthracnose races and no cultivar was resistant to all of the races. Many bean cultivars produced intermediate anthracnose ratings to races 31 and 105 and tests of 16 dry bean cultivars against those races indicated that all cultivars with intermediate ratings to a specific race were segregating in their seedling reactions and none of the cultivars produced plants with only intermediate anthracnose severity ratings. This study provides new information on the anthracnose reactions of common bean cultivars in Canada, which should be useful for the development of new bean cultivars with durable resistance.


Helia ◽  
2016 ◽  
Vol 39 (64) ◽  
pp. 45-56 ◽  
Author(s):  
J. R. Prasifka ◽  
L. F. Marek ◽  
D. K. Lee ◽  
S. B. Thapa ◽  
V. Hahn ◽  
...  

AbstractDelayed planting is recommended to reduce damage from sunflower insect pests in the United States, including the sunflower moth, Homoeosoma electellum (Hulst) and banded sunflower moth, Cochylis hospes Walsingham. However, in some locations, planting earlier or growing later-maturing hybrids could improve yield or oil content of sunflowers which would partially offset any added costs from insect pests or their management. Because the abundance and distribution of some sunflower insects have changed since recommendations for delayed planting were developed, experimental plots were grown in 2012 and 2013 at sites in North Dakota, Nebraska, Iowa, and Illinois. Sunflowers were planted two to four weeks earlier than normal, including hybrids that flower two to three weeks later than elite commercial hybrids. The sum of seed damaged by sunflower moth, banded sunflower moth, and red sunflower seed weevil, Smicronyx fulvus LeConte, (i. e., total percentage) was influenced by location, but not the relative maturity of tested entries. However, when damage attributed solely to the red sunflower seed weevil was analyzed, more damaged seed were found for late-maturing entries in North Dakota and Nebraska. In addition to the trial data, current pest populations are lower than when delayed planting was first recommended and insecticide use during sunflower bloom is both common and effective. Together, these observations suggest factoring insect pests into planting time decisions may be unnecessary, except for areas with a history of problems with severe pests that cannot be managed using insecticides (e. g., sunflower midge, Contarinia schulzi Gagné).


2006 ◽  
Vol 96 (12) ◽  
pp. 1363-1371 ◽  
Author(s):  
Leslie A. Wanner

Common scab is a serious disease of potatoes and other root and tuber crops, affecting crop quality and market value. The disease is caused by gram positive soil bacteria in the genus Streptomyces. Disease incidence and severity vary in different locations and years; this is due in part to variation in the environment (weather) and genetic variation in potato cultivars. Little information is available on the contribution of genetic variation by the pathogen. To examine genetic diversity in different locations within the United States, streptomycetes were isolated from lesions on field-grown potatoes from six states. Isolates were classified into species based on sequence of variable regions in the 16s rRNA gene. The presence of genes associated with the recently described S. turgidiscabies pathogenicity island (PAI) was also determined. About half of the isolates belonged to S. scabies or S. europaeiscabiei based on 16s rDNA sequence, and had characteristic features of the PAI. They were found in all six states, and were pathogenic on potato and radish. The remaining isolates included pathogens and nonpathogens. They were varied in appearance, and represent several species, including one pathogenic species not previously reported. Some pathogenic isolates lacked one or more genes characteristic of the PAI, although all had genes for biosynthesis of the pathogenicity determinant thaxtomin. In this relatively small survey, regional differences in scab-causing streptomycetes were seen. This report furnishes tools and baseline data for population genetic study of scab-causing streptomycetes in the United States.


Plant Disease ◽  
2011 ◽  
Vol 95 (3) ◽  
pp. 263-268 ◽  
Author(s):  
S. K. Gremillion ◽  
A. K. Culbreath ◽  
D. W. Gorbet ◽  
B. G. Mullinix ◽  
R. N. Pittman ◽  
...  

Field experiments were conducted in 2002 to 2006 to characterize yield potential and disease resistance in the Bolivian landrace peanut (Arachis hypogaea) cv. Bayo Grande, and breeding lines developed from crosses of Bayo Grande and U.S. cv. Florida MDR-98. Diseases of interest included early leaf spot, caused by the fungus Cercospora arachidicola, and late leaf spot, caused by the fungus Cercosporidium personatum. Bayo Grande, MDR-98, and three breeding lines, along with U.S. cvs. C-99R and Georgia Green, were included in split-plot field experiments in six locations across the United States and Bolivia. Whole-plot treatments consisted of two tebuconazole applications and a nontreated control. Genotypes were the subplot treatments. Area under the disease progress curve (AUDPC) for percent defoliation due to leaf spot was lower for Bayo Grande and all breeding lines than for Georgia Green at all U.S. locations across years. AUDPC for disease incidence from one U.S. location indicated similar results. Severity of leaf spot epidemics and relative effects of the genotypes were less consistent in the Bolivian experiments. In Bolivia, there were no indications of greater levels of disease resistance in any of the breeding lines than in Bayo Grande. In the United States, yields of Bayo Grande and the breeding lines were greater than those of the other genotypes in 1 of 2 years. In Bolivia, low disease intensity resulted in the highest yields in Georgia Green, while high disease intensity resulted in comparable yields among the breeding lines, MDR-98, and C-99R. Leaf spot suppression by tebuconazole was greater in Bolivia than in the United States. This result indicates a possible higher level of fungicide resistance in the U.S. population of leaf spot pathogens. Overall, data from this study suggest that Bayo Grande and the breeding lines may be desirable germplasm for U.S. and Bolivian breeding programs or production.


2021 ◽  
pp. 003335492110267
Author(s):  
Kiersten J. Kugeler ◽  
Paul S. Mead ◽  
Amy M. Schwartz ◽  
Alison F. Hinckley

Lyme disease is the most common vector-borne disease in the United States and is characterized by a bimodal age distribution and male predominance. We examined trends in reported cases during a 25-year period to describe changes in the populations most affected by Lyme disease in the United States. We examined demographic characteristics of people with confirmed cases of Lyme disease reported to the Centers for Disease Control and Prevention during 1992-2016 through the National Notifiable Diseases Surveillance System. We grouped cases into 5-year periods (1992-1996, 1997-2001, 2002-2006, 2007-2011, 2012-2016). We calculated the average annual incidence by age and sex and used incidence rate ratios (IRRs) to describe changes in Lyme disease incidence by age and sex over time. We converted patient age at time of illness into patient birth year to ascertain disease patterns according to birth cohorts. The incidence of Lyme disease in the United States doubled from 1992-1996 to 2012-2016 (IRR = 1.74; 95% CI, 1.70-1.78) and increased disproportionately among males; IRRs were 39%-89% higher among males than among females for most age groups. During the study period, children aged 5-9 years were most frequently and consistently affected. In contrast, the average age of adults with Lyme disease increased over time; of all adults, people born during 1950-1964 were the most affected by Lyme disease. Our findings suggest that age-related behaviors and susceptibilities may drive infections among children, and the shifting peak among adults likely reflects a probability proportional to the relative size of the baby boom population. These findings can inform targeted and efficient public health education and intervention efforts.


Plant Disease ◽  
2007 ◽  
Vol 91 (4) ◽  
pp. 468-468 ◽  
Author(s):  
D. H. Gent ◽  
R. R. Martin ◽  
C. M. Ocamb

Onion (Allium cepa) and leek (Allium porrum) are grown on approximately 600 ha in western Oregon annually for bulb and seed production. During July and August of 2006, surveys of onion bulb crops and onion and leek seed crops in western Oregon found plants with symptoms of elongated to diamond-shaped, straw-colored lesions characteristic of those caused by Iris yellow spot virus (IYSV) (1–4). Symptomatic plants were collected from fields of an onion bulb crop, an onion seed crop, and two leek seed crops located in Marion County. The onion bulb crop had been planted in the spring of 2006, and the onion and leek seed crops had been planted in the fall of 2005, all direct seeded. Cultivar names were not provided for proprietary purposes. Symptomatic plants in the onion bulb crop and leek seed crop generally were found near the borders of the field. Disease incidence was less than 5% and yield losses in these crops appeared to be negligible. In the onion seed crop, symptomatic plants were found throughout the field and disease incidence was approximately 20%. Approximately 1% of the onion plants in this field had large necrotic lesions that caused the seed stalks (scapes) to lodge. The presence of IYSV was confirmed from symptomatic leaves and scapes by ELISA (Agdia Inc., Elkhart, IN) using antiserum specific to IYSV. RNA was extracted from symptomatic areas of onion leaves and scapes, and a portion of the nucleocapsid gene was amplified by reverse transcription-PCR. The amplicons were sequenced and found to share more than 99% nucleotide and amino acid sequence identity with an onion isolate of IYSV from the Imperial Valley of California (GenBank Accession No. DQ233475). In the Pacific Northwest region of the United States, IYSV has been confirmed in the semi-arid regions of central Oregon (1), central Washington (2), and the Treasure Valley of eastern Oregon and southwest Idaho (3). To our knowledge, this is the first report of the disease on a host crop in the mild, maritime region west of the Cascade Mountain Range and the first report of IYSV on leek seed crops in the United States, which complements a simultaneous report of IYSV on commercial leek in Colorado. The presence of IYSV may have implications for the iris and other ornamental bulb industries in western Oregon and western Washington. This report underscores the need for further research to determine the impact of the disease on allium crops and other hosts and the development of effective management programs for IYSV and the vector, Thrips tabaci. References: (1) F. J. Crowe and H. R. Pappu. Plant Dis. 89:105, 2005. (2) L. J. du Toit et al. Plant Dis. 88:222, 2004. (3) J. M. Hall et al. Plant Dis. 77:952, 1993. (4) H. F. Schwartz et al. Plant Dis. 91:113, 2007.


Plant Disease ◽  
2004 ◽  
Vol 88 (8) ◽  
pp. 909-909 ◽  
Author(s):  
S. N. Wegulo ◽  
S. T. Koike ◽  
M. Vilchez ◽  
P. Santos

During February 2004, diseased double impatiens (Impatiens walleriana) plants were received from a commercial grower in southern California. The upper surfaces of symptomatic leaves were pale yellow with no distinct lesions. Diseased leaves later wilted, and severely affected leaves abscised from the stem. At the nursery, only double impatiens plants in the Fiesta series were infected, and some cultivars were more heavily infected than others. Disease incidence in cv. Sparkler Hot pink was nearly 100%. The interior of infected leaves was colonized by coenocytic mycelium. A conspicuous white growth was observed only on the underside of leaves. Sporangiophores were hyaline, thin walled, emergent from stomata, and had slightly swollen bases. Sporangiophore branching was distinctly monopodial. Smaller sporangiophore branches were arranged at right angles to the supporting branches, and tips of branches measured 8 to 14 μm long. Sporangia were ovoid and hyaline with a single pore on the distal ends. Distal ends of sporangia were predominantly flat but occasionally had a slight papilla. Short pedicels were present on the attached ends. Sporangia measured 19.4 to 22.2 (-25.0) μm × 13.9 to 16.7 (-19.4) μm. Oospores were not observed in leaf tissue. On the basis of symptoms and morphology of the organism, the pathogen was identified as Plasmopara obducens J. Schröt. Pathogenicity tests were done on double type cvs. Fiesta, Tioga Red, and Tioga Cherry Red and on single type cvs. Cajun Watermelon and Accent Lilac. Plants were spray inoculated with sporangiospore suspensions (1 × 104 sporangiospores per milliliter), incubated for 24 h in a dew chamber (18 to 20°C), and then maintained in a greenhouse (22 to 24°C). Symptoms and signs of downy mildew developed after 12 days only on inoculated cv. Fiesta plants, and the pathogen morphology matched that of the originally observed pathogen. Nontreated control plants did not develop downy mildew. To our knowledge, this is the first report of downy mildew on impatiens in California. P. obducens is one of two causal agents of downy mildew of impatiens (2,4). The other pathogen, Bremiella sphaerosperma, has dichotomous sporangiophore branching and causes lesions with well-defined margins (2,4). In the United States, the disease has been recorded in the eastern and northeastern states and in Indiana, Minnesota, Mississippi, Montana, and Wisconsin (3). In Canada, the disease has been recorded in Manitoba and Quebec (1). References: (1) I. L. Conners. An Annotated Index of Plant Diseases in Canada and Fungi Recorded on Plants in Alaska, Canada, and Greenland. Research Branch, Canada Department of Agriculture, Publication 1251, 1967. (2) O. Constantinescu. Mycologia 83:473, 1991. (3) D. F. Farr et al. Fungi on Plants and Plant Products in the United States. The American Phytopathological Society, 1989. (4) G. W. Wilson. Bull. Torrey Bot. Club 34:387, 1907.


Sign in / Sign up

Export Citation Format

Share Document