scholarly journals First Report of Pantoea dispersa Causing Brown Blotch Disease in Flammulina filiformis in China

Plant Disease ◽  
2021 ◽  
Author(s):  
Haijing Hu ◽  
Miao Xu ◽  
Haiyan Song ◽  
Zhijun Zhai ◽  
Minghui Chen ◽  
...  

Flammulina filiformis (previously known as F. velutipes) is one of the most frequently cultivated and consumed edible mushrooms in China. In October 2020, brown blotch disease was observed on the pileus of F. filiformis at a mushroom factory in Ganzhou (25.74°N; 114.95°E), Jiangxi, China, with a disease incidence of approximately 6%. Symptoms initially appeared as small, irregular spots on the infected pileus, with color ranging from pale yellow to light brown. Such spots were enlarged and pitted at high relative humidity within several days, and finally caused malformation of the caps and yield reduction. To isolate the causal agent, the blotches on F. filiformis caps were homogenized and diluted with sterilized distilled water, and the resulting suspension (100 μl) was spread onto LB agar plates. After incubation at 28°C for 48 h, three colonial types were obtained: (i) yellow, convex, and smooth colonies, (ii) light yellowish, irregular, and rough colonies, and (iii) milky white, glistening, and smooth colonies. The first colonial type was predominant. A single colony of each type was randomly selected and streaked on fresh LB agar plates to obtain pure cultures namely PF1, PF2 and PF3 respectively. To test pathogenicity of the three isolates, young F. filiformis fruiting bodies (8- or 10-day-old primordium) grown in culture bottles were inoculated by spraying a bacterial suspension (108 CFU/ml, 3 ml per bottle on average), and cultivated in a mushroom house at 15±2°C and 95% relative humidity. The fruiting bodies sprayed with sterilized distilled water served as controls. The pathogenicity tests repeated three times, and at least five culture bottles were included in each experiment. Among the three types of bacteria, only strain PF1 induced symptoms similar to the original disease. The brown spots were observed on treated pileus 10 days after inoculation, and a fresh weight reduction of 30.9% per culture bottle was observed. In contrast, those fruiting bodies treated with water remained asymptomatic. Same yellow colonies were also re-isolated from the infected pileus, and identified by subsequent methods. The strain PF1 was gram negative, motile, and short rods. Biochemical analysis showed that the strains belonged to genus Pantoea (positive for citric acid, inositol, mannitol, methyl red test, and Voges-Proskauer test but negative for lysine, ornithine, phenylalanine, H2S, urease, D-melibiose, sorbitol, adonitol, and raffinose). Further PCR amplification and sequencing of four genes, 16S rRNA gene with primer 27F/1492R, fusA gene with primer fusA3/fusA4, gyrB gene with primer gyrBf1/gyrBr1, and rpoB genes with primer Vic3/Vic2 (Delétoile et al. 2009; Palemon et al. 2021), were performed to identify the species. A BLASTn showed 100%, 100%, 99.51%, and 99.26% homology, respectively, with those of P. dispersa (MT072166, CP045216, CP076369, MH015168). The four gene sequences were deposited in GenBank (accession numbers: MZ373179, MZ393661, MZ393662, MZ393663). A phylogenetic analysis based on the four concatenated genes also showed that the strain PF1 well clustered with the type strain of P. dispersa. This species has been reported to cause leaf blight in rice (Toh et al. 2019), soft rot in Agave angustifolia (Palemon et al. 2021), and bulb decay in onion (Chang et al. 2018). To the best of our knowledge, this is the first report of P. dispersa causing brown blotch diseases on cultivated F. filiformis, which was previously known to be caused by Pseudomonas tolaasii (Lee et al. 2002). Our results also indicate P. dispersa could induce malformation of pileus and lead to a severe yield loss if not controlled effectively. Therefore, it should be considered in future disease management of F. filiformis cultivation.

Plant Disease ◽  
2020 ◽  
Author(s):  
yanchang Yang ◽  
Ziting Yao ◽  
Mu-Qing Zhang ◽  
Chengwu Zou ◽  
Baoshan Chen

In late September 2019, seven stalks of about 1400 stalks of sugarcane cultivar Zhongzhe 1 exhibited soft rot symptoms in a trial plot in Beihai city, Guangxi province of China. Symptoms included scorched and collapsed leaves, maceration of stalks, and sour smelling exudates from the stalks (Supplementary Fig. S1). Severely diseased stalks had collapsed and were dead. Internal stalk fragments of 5 × 5 mm were collected at the junction of healthy and diseased tissue after surface-sterilization of stalks with 70% ethanol for one minute, and three times rinsing with sterile distilled water. Stalk fragments were placed on Luria–Bertani agar medium (1 % w/v tryptone, 0.5 % w/v yeast extract, 1 % w/v NaCl, 1 % w/v agar, pH7.0) and plates were put in an incubator at 30°C for 48h. Four types of bacterial colonies were obtained, and small and white colonies with irregular margins were the most dominant. A single colony of each type was diluted in sterile distilled water and aliquots of each suspension were streaked on fresh medium plates to obtain pure cultures. Ten eight-week-old stalks (11 th leaf stage) of sugarcane plants, which derived from cuttings of symptomless cultivar Zhongzhe 1, were inoculated by injection of 300 μl of bacterial suspension (3.5x108 CFU/ml) into the stalks. Another 10 stalks were injected with pure water and served as control. The inoculated plants were kept in a greenhouse at 25-37℃.Among the four types of bacteria, only strain BH9 induced symptoms that were identical to those of diseased canes observed in the field (Supplementary Fig. S1). Elongated water-soaked lesions were observed around the inoculation sites three days post inoculation. Five of the 10 BH9-inoculated plants had collapsed two days later. Water-soaked stalks had a sour smell similar to the filed diseased plants. Eight days post inoculation, all BH9-inoculated plants exhibited symptoms but control plants remained symptomless up to 30 days after inoculation. Uniform white colonies with irregular margins were isolated from the inoculated stalks that developed soft rot symptom, and these bacteria caused again stalk soft rot symptoms when inoculated to a new batch of 10 healthy plants. The 16S rRNA gene of strain BH9 was amplified by PCR with primer pair fD2/rP1 and the PCR amplicons from three independent colonies were sequenced. The sequences of the three amplicons were identical (Accession No. MT723897). BLAST alignments of the 16S rDNA sequence from BH9 strain with the GenBank database revealed that BH9 belonged to the genus Dickeya (98.5% identity between D. zeae BH9 and D. zeae EC1). Further PCR assays and sequencing of three genes, DNA polymerase III gamma subunit gene dnaX with primers dnaXf/dnaXr, DNA gyrase gene gyrB with primers gyrBf1/gyrBr1, and recombinase A gene recA with primers recAf/recAr, were performed to identify the species within the genus Dickeya (Zhang et al., 2014). BH9 sequences of these genes (Accession No. MT723898 to MT723900) had highest identity (97.5%, 97.6%, and 97.7%, respectively) with those from D. zeae EC1 (GenBank accession No. CP006929.1). To determine the evolutionary relationship of BH9 to other Dickeya species and strains, a phylogenetic analysis was performed using dnaX, gyrB, and recA sequences. As shown in Supplementary Fig. S2, BH9 clustered with D. zeae strains and formed a lineage distinguishable from other Dickeya species. Among the closest strains, D. zeae NCPPB3531 (Accession No. CM001980.1) was isolated from potato and D. zeae CSL RW192 (Accession No. CM001972.1) from river water (Pritchard et al., 2013). Consequently, strain BH9 was identified as D. zeae. This bacterial species has been reported to cause soft rot in rice (Pu et al., 2012), banana (Zhang et al., 2014), maize (Martinez-Cisneros et al., 2014), and clivia (Hu et al., 2018). To the best of our knowledge, this is the first report of a bacterial stalk rot caused by D. Zeae in sugarcane. In fact, low incidence of D. zeae-caused stalk soft rot was recently found in sugarcane fields in Fusui County, about 150 km north to Beihai. Given the potential threat of this disease to the local sugarcane industry, the mode of transmission, cultivar resistance, and measures to control the disease should be investigated.


Plant Disease ◽  
2021 ◽  
Author(s):  
JuFen Li ◽  
Ganghan Zhou ◽  
Tan Wang ◽  
Tao Lin ◽  
yiwen wang ◽  
...  

Muskmelon (Cucumis melo L.) is an important economic crop in China, which is planted on more than 376, 000 hectares with over 13 million tons of annual fruit production. In February 2020, a serious bacterial stem and leaf rot disease on muskmelon plants was observed in greenhouses in Liguo Town, Ledong County, Hainan Province, China (18.54° N, 108.87° E), with disease incidences being approximately 10 to 12%. Initially, soft rot symptoms appeared on petioles and stems, showing yellow bacterial ooze signs, which was different from the milky white ooze produced by Erwinia tracheiphila infection. The infected tissues of petioles, stems, and leaves eventually developed into browning and withering symptoms. To isolate and identify the causal agent, the lesion tissues were sterilized by immersion in 75% ethanol for 30 s, washed three times with sterile water, and then cut and soaked in 1 ml of distilled water for 10 min. The suspension was serially diluted and spread on Luria-Bertani agar (LB) medium. After incubation at 28°C for 24 to 36 h, the resulted bacterial colonies were tiny and were streaked on LB plate for further culture. After purification, the colonies were yellow, circular, smooth-margined, and two independent representative isolates CM-11 and CM-12 were used for further validation experiments. The electron microscope analysis showed that the pathogen was rod-shaped, with a length of 1.34 ± 0.22 μm and a width of 0.54 ± 0.06 μm (N=50), and had a single terminal flagellum. The gram staining of the two isolates was negative. Moreover, the tested strains were positive for catalase but negative for oxidase and were able to utilize D-glucose, L-arabinose, and D-mannitol. Morphological, physiological, and biochemical characteristics of both isolates were consistent with those of Pseudomonas spp. To verify the species identity of the bacterial pathogens, genomic DNA of isolates CM-11 and CM-12 was extracted and several conserved genes were amplified and sequenced, including the 16S rRNA gene with primers 27F/1492R (GenBank MW187499 and MW187500), rpoB gene with primers V4/LAPS27 (MW201910 and MW446819), and gyrB gene with primers gyrBBAUP2/APrU (MW187501 and MW187502) (Mulet et al. 2010). In the BLAST analysis, the 16S rRNA sequences showed a 99% similarity to that of Pseudomonas oryzihabitans strains TH19 (LC026009), AA21 (MG571765). The rpoB and gyrB sequences showed high similarity (> 98%) to P. oryzihabitans strains FDAARGOS_657. The phylogenetic tree analysis of rpoB and gyrB genes further verified that the two isolates CM-11 and CM-12 were most closely related to P. oryzihabitans species. Consequently, the two pathogenic isolates CM-11 and CM-12 were identified as P. oryzihabitans. Both strains of CM-11 and CM-12 were tested to accomplish Koch's postulates. Young branches of muskmelons (cultivar Yugu, 10 days after pollination) were chosen as the material for inoculation. Ten healthy detached branches were placed in 15 ml tubes by submerging the cutting wound in 5 ml of the bacterial suspension (108 CFU/ml). Ten additional branches were implemented with sterilized distilled water as a negative control. The inoculated branches were placed in a plastic box containing moistened paper at 28°C. Rotting symptoms appeared within 5 days after infection, while the control samples remained healthy. Bacteria were re-isolated from diseased tissues, and the 16S rRNA gene sequences of the isolates showed the same as those from the original pathogen. Panicle blight and grain discoloration disease caused by P. oryzihabitans on rice has been described in China (Hou et al. 2020). It’s also recently found that P. oryzihabitans caused center blackening disease on muskmelon fruit in Korea (Choi et al. 2019). This study indicated that it was a causative agent of stem and leaf rot disease during the field growth period. To the best of our knowledge, this is the first report of P. oryzihabitans causing muskmelon stem rot in China.


Plant Disease ◽  
2021 ◽  
Author(s):  
José Luis Palomo Gómez ◽  
Maria Shima ◽  
Adela Monterde ◽  
Inmaculada Navarro ◽  
Silvia Barbé ◽  
...  

In September 2019, symptoms resembling those of bacterial leaf blight were observed on carrot plants (Daucus carota L. subsp. sativus Hoffm.) cv. Romance cultivated in commercial plots in Chañe (Segovia), Spain. Symptoms were observed in two plots surveyed representing three hectares, with an incidence greater than 90%, and also in some plots in other nearby municipalities sown with the same batch of seeds. The lesions observed at the ends of the leaves were initially yellow that develop dark brown to black with chlorotic halos on leaflets that turned necrotic. Yellow, Xanthomonas-like colonies were isolated onto YPGA medium (Ridé 1969) from leaf lesions. Two bacterial isolates were selected and confirmed by real-time PCR using a specific primer set for Xanthomonas hortorum pv. carotae (Temple et al. 2013). All isolates were gram-negative, aerobic rods positive for catalase, able of hydrolyzing casein and aesculin and growing at 2% NaCl, while were negative for oxidase and urease tests. Sequences of 16S rRNA gene showed 100% similarity with Xanthomonas campestris, X. arboricola, X. gardneri, X. cynarae strains (GenBank accession numbers: MW077507.1 and MW077508.1 for the isolates CRD19-206.3 and CRD19-206.4, respectively). However, the resulting phylogeny of multilocus sequence analysis (MLSA) of a concatenation of the housekeeping genes atpD, dnaK, and efp (Bui Thi Ngoc et al. 2010), by using neighbour-joining trees generated with 500 bootstrap replicates, grouped the two isolates with the X. hortorum pv. carotae M081 strain (Kimbrel et al. 2011) (GenBank accession numbers: MW161270 and MW161271 for atpD for the two isolates, respectively; MW161268 and MW161269 for dnaK; MW161272 and MW161273 for efp). A pairwise identity analysis revealed a 100% identity between all three isolates. Pathogenicity of the isolates was tested by spray inoculation (Christianson et al. 2015) with a bacterial suspension (108 CFU/ml) prepared in sterile distilled water at 3 to 4 true-leaf stage (six plants per isolate). Sterile distilled water was used as negative control. The inoculated plants were incubated in a growth chamber (25°C and 95% relative humidity [RH]) for 72 h, and then transferred to a greenhouse at 24 to 28°C and 65% RH. Characteristic leaf blight symptoms developed on inoculated carrot plants, while no symptoms were observed on the negative control plants 20 days after inoculation. The bacterium was re-isolated from symptomatic tissue and the identity confirmed through PCR analysis. Based on PCR, morphological and phenotypic tests, sequence analysis, and pathogenicity assays, the isolates were identified as X. hortorum pv. carotae. To our knowledge, this is the first report of bacterial leaf blight of carrot caused by X. hortorum pv. carotae in Spain, and the first molecular and pathological characterization. It is important to early detect this pathogen and take suitable measures to prevent its spread, since it could cause yield losses for a locally important crop such as carrot.


Plant Disease ◽  
2012 ◽  
Vol 96 (8) ◽  
pp. 1225-1225 ◽  
Author(s):  
T. S. Schubert ◽  
M. M. Dewdney ◽  
N. A. Peres ◽  
M. E. Palm ◽  
A. Jeyaprakash ◽  
...  

In March 2010, citrus black spot symptoms were observed on sweet orange trees in a grove near Immokalee, FL. Symptoms observed on fruit included hard spot, cracked spot, and early virulent spot. Hard spot lesions were up to 5 mm, depressed with a chocolate margin and a necrotic, tan center, often with black pycnidia (140 to 200 μm) present. Cracked spot lesions were large (15 mm), dark brown, with diffuse margins and raised cracks. In some cases, hard spots formed in the center of lesions. Early virulent spot lesions were small (up to 7 mm long), bright red, irregular, indented, and often with many pycnidia. In addition, small (2 to 3 mm), elliptical, reddish brown leaf lesions with depressed tan centers were observed on some trees with symptomatic fruit. Chlorotic halos appeared as they aged. Most leaves had single lesions, occasionally up to four per leaf. Tissue pieces from hard spots and early virulent spots were placed aseptically on potato dextrose agar (PDA), oatmeal agar, or carrot agar and incubated with 12 h of light and dark at 24°C. Cultures that grew colonies within a week were discarded. Fourteen single-spore cultures were obtained from the isolates that grew slower than the Guignardia mangiferae reference cultures, although pycnidia formed more rapidly in the G. mangiferae cultures (1). No sexual structures were observed. Cultures on half-PDA were black and cordlike with irregular margins with numerous pycnidia, often bearing white cirrhi after 14 days. Conidia (7.1 to 7.8 × 10.3 to 11.8 μm) were hyaline, aseptate, multiguttulate, ovoid with a flattened base surrounded by a hyaline matrix (0.4 to 0.6 μm) and a hyaline appendage on the rounded apex, corresponding to published descriptions of G. citricarpa (anomorph Phyllosticta citricarpa) (1). A yellow pigment was seen in oatmeal agar surrounding G. citricarpa, but not G. mangiferae colonies as previously reported (1,2). DNA was extracted from lesions and cultures and amplified with species-specific primers (2). DNA was also extracted from G. mangiferae and healthy citrus fruit. The G. citricarpa-specific primers produced a 300-bp band from fruit lesions and pure cultures. G. mangiferae-specific primers produced 290-bp bands with DNA from G. mangiferae cultures. The internally transcribed spacer (ITS) of the rRNA gene, translation-elongation factor (TEF), and actin gene regions were sequenced from G. citricarpa isolates and deposited in GenBank. These sequences had 100% homology with G. citricarpa ITS sequences from South Africa and Brazil, 100% homology with TEF, and 99% homology with actin of a Brazilian isolate. Pathogenicity tests with G. citricarpa were not done because the organism infects immature fruit and has an incubation period of at least 6 months (3). In addition, quarantine restrictions limit work with the organism outside a contained facility. To our knowledge, this is the first report of black spot in North America. The initial infested area was ~57 km2. The disease is of great importance to the Florida citrus industry because it causes serious blemishes and significant yield reduction, especially on the most commonly grown ‘Valencia’ sweet orange. Also, the presence of the disease in Florida may affect market access because G. citricarpa is considered a quarantine pathogen by the United States and internationally. References: (1) R. P. Baayen et al. Phytopathology 92:464, 2002. (2) N. A. Peres et al. Plant Dis. 91:525, 2007 (3) R. F. Reis et al. Fitopath Bras. 31:29, 2006.


Plant Disease ◽  
2015 ◽  
Vol 99 (2) ◽  
pp. 287-287 ◽  
Author(s):  
G. Z. Wang ◽  
M. P. Guo ◽  
Y. B. Bian

Coprinus comatus is one of the most commercially important mushrooms in China. Its fruiting body possesses rich nutritional and medicinal value. In November 2013, unusual symptoms were observed on C. comatus on a mushroom farm in Wuhan, Hubei, China. At first, fruiting bodies were covered by white and cobweb-like mycelia. Later, the cap and stipe turned brown or dark before rotting and cracking. The pathogen was isolated from infected tissue of C. comatus. Colonies of the pathogen on potato dextrose agar (PDA) medium first appeared yellowish, followed by an obvious ochraceous or pinkish color. Aerial mycelia grew along the plate wall, cottony, 1 to 4 mm high. Conidiophores were borne on the tops of hyphae, had two to four branches, and were cylindrical, long clavate, or fusiform. Conidia were borne on the tops of the branches of conidiophores, had one to two separates, and were long and clavate. The spores ranged from 15.3 to 22.1 μm long and were 5.1 to 8.3 μm wide, which was consistent with the characteristics of Cladobotryum protrusum (1). The species was identified by ribosomal internal transcribed spacer sequencing. The ribosomal ITS1-5.8S-ITS2 region was amplified from the isolated strain using primers ITS1 and ITS4. A BLAST search in GenBank revealed the highest similarity (99%) to C. protrusum (GenBank Accession Nos. FN859408.1 and FN859413.1). The pathogen was grown on PDA at 25°C for 3 days, and the inoculation suspension was prepared by flooding the agar surface with sterilized double-distilled water for spore suspension (1 × 105 conidia/ml). In one treatment, the suspension was sprayed on casing soil (106 conidia/m2) and mixed thoroughly with it, then cased with treated soil for 2 to 3 cm thickness on the surface of compost in cultivation pots (35 × 25× 12 cm), with sterile distilled water as a control (2). Eight biological replicates were included in this treatment. In the second treatment, mycelia plugs (0.3 × 0.3 cm) without spore production were added to 20 fruiting bodies. Mushrooms treated with blank agar plugs (0.3 × 0.3 cm) were used as a control. The plugs were covered with sterilized cotton balls to avoid loss of moisture. Tested cultivation pots were maintained at 18°C and 85 to 95% relative humidity. In the samples where casing soil was sprayed with conidia suspension, white mildew developed on the pileus, and a young fruiting body grew out from the casing soil. Eventually, the surface of the mushroom was overwhelmed by the mycelia of the pathogen and the pileus turned brown or black. For the other group inoculated with mycelia plugs, only the stipe and pileus inoculated with mycelia turned brown or dark; it rotted and cracked 2 to 3 days later. The symptoms were similar to those observed on the C. comatus cultivation farm. Pathogens re-isolated from pathogenic fruiting bodies were confirmed to be C. protrusum based on morphological characteristics and ITS sequence. To our knowledge, this is the first report of the occurrence of C. protrusum on the edible mushroom C. comatus (3). Based on the pathogenicity test results, C. protrusum has the ability to severely infect the fruiting body of C. comatus. References: (1) K. Põldmaa. Stud. Mycol. 68:1, 2011. (2) F. J. Gea et al. Plant Dis. 96:1067, 2012. (3) W. H. Dong et al. Plant Dis. 97:1507, 2013.


Plant Disease ◽  
2021 ◽  
Author(s):  
Lin Yu ◽  
Changdeng Yang ◽  
Zhijuan Ji ◽  
Yuxiang Zeng ◽  
Yan Liang ◽  
...  

In autumn 2020, leaf blight was observed on rice (Oryza sativa L., variety Zhongzao39, Yongyou9, Yongyou12, Yongyou15, Yongyou18, Yongyou1540, Zhongzheyou8, Jiafengyou2, Xiangliangyou900 and Jiyou351) in the fields of 17 towns in Zhejiang and Jiangxi Provinces, China. The disease incidence was 45%-60%. Initially, water-soaked, linear, light brown lesions emerged in the upper blades of the leaves, and then spread down to leaf margins, which ultimately caused leaf curling and blight during the booting-harvest stage (Fig. S1). The disease symptoms were assumed to be caused by Xanthomonas oryzae pv. oryzae (Xoo), the pathogen of rice bacterial blight. 63 isolates were obtained from the collected diseased leaves as previously described (Hou et al. 2020). All isolates showed circular, smooth-margined, yellow colonies when cultured on peptone sugar agar (PSA) medium for 24h at 28℃. The cells were all gram-negative and rod-shaped with three to six peritrichous flagella; positive for catalase, indole, glucose fermentation and citrate utilization, while negative for oxidase, alkaline, phenylalanine deaminase, urease, and nitrate reductase reactions. 16S rRNA gene sequence analysis from the 6 isolates (FY43, JH31, JH99, TZ20, TZ39 and TZ68) revealed that the amplified fragments shared 98% similarity with Pantoea ananatis type strain LMG 2665T (GenBank JFZU01) (Table S3). To further verify P. ananatis identity of these isolates, fragments of three housekeeping genes including gyrB, leuS and rpoB from the 6 isolates were amplified and sequenced, which showed highest homology to LMG 2665T with a sequence similarity of 95%-100% (Table S3). Primers (Brady et al. 2008) and GenBank accession numbers of gene sequences from the 6 isolates are listed in Table S1 and Table S2. Phylogenetic analysis of gyrB, leuS and rpoB concatenated sequences indicated that the 6 isolates were clustered in a stable branch with P. ananatis (Fig. S2). Based on the above morphological, physiological, biochemical and molecular data, the isolates are identified as P. ananatis. For pathogenicity tests, bacterial suspension at 108 CFU/mL was inoculated into flag leaves of rice (cv. Zhongzao39) at the late booting stage using clipping method. Water was used as a negative control. The clipped leaves displayed water-soaked lesions at 3 to 5 days after inoculation (DAI); then the lesion spread downward and turned light brown. At about 14 DAI, blight was shown with similar symptoms to those samples collected from the rice field of Zhejiang and Jiangxi provinces (Fig. S1). In contrast, the control plants remained healthy and symptomless. The same P. ananatis was re-isolated in the inoculated rice plants, fulfilling Koch’s postulates. In the past decade, P. ananatis has been reported to cause grain discoloration in Hangzhou, China (Yan et al. 2010) and induce leaf blight as a companion of Enterobacter asburiae in Sichuan province, China (Xue et al. 2020). Nevertheless, to the best of our knowledge, this is the first report of P. ananatis as the causative agent of rice leaf blight in southeast China. This study raises the alarm that the emerging rice bacterial leaf blight in southeast China might be caused by a new pathogen P. ananatis, instead of Xoo as traditionally assumed. Further, the differences of occurrence, spread and control between two rice bacterial leaf blight diseases caused by P. ananatis and Xoo, respectively need to be determined in the future.


Plant Disease ◽  
2021 ◽  
Author(s):  
Lei Li ◽  
Yishuo Huang ◽  
Yanxia Shi ◽  
A LI CHAI ◽  
Xuewen Xie ◽  
...  

Coriander (Coriandrum sativum L.) or Chinese parsley is a culinary herb with multiple medicinal effects that are widely used in cooking and traditional medicine. From September to November 2019, symptoms were observed in 2-month-old coriander plants from coriander fields in Lanzhou and Wenzhou, China. The disease developed rapidly under cold and wet climatic conditions, and the infection rate was almost 80% in open coriander fields. Typical symptoms on leaves included small, water-soaked blotches and irregular brown spots surrounding haloes; as the disease progressed, the spots coalesced into necrotic areas. Symptomatic leaf tissue was surface sterilized, macerated in sterile distilled water, and cultured on nutrient agar plates at 28 °C for 48 h (Koike and Bull, 2006). After incubation, six bacterial colonies, which were individually isolated from collected samples from two different areas, were selected for further study. Colonies on NA plate were small, round, raised, white to cream-colored, and had smooth margins. All bacterial isolates were gram-negative, rod-shaped and nonfluorescent on King's B medium. The bacteria were positive for levan production, Tween 80 hydrolysis, and tobacco hypersensitivity but negative for oxidase, potato slice rot test, arginine dihydrolase, ice nucleation activity, indole production and H2S production. The suspension of representative isolate for inoculating of plants was obtained from single colony on King's B medium for 2-3 days at 28 °C. DNA was extracted from bacterial suspensions of YS2003200102 cultured in 20 ml of King’s B medium broth at 28 °C for 1 day. Extraction was performed with a TIANamp Bacterial DNA Kit (TIANGEN, China) according to the manufacturer’s recommendations. The pathogen was confirmed by amplification and sequencing of the glyceraldehyde-3-phosphate dehydrogenase A (gapA) gene, the citrate synthase (gltA) gene, the DNA gyrase B (gyrB) gene and the RNA polymerase sigma factor 70 (rpoD) gene using gapA-For/gapA-Rev, gltA-For/gltA-Rev, gyrB-For/gryB-Rev, rpoD-For/rpoD-Rev primers, respectively (Popović et al., 2019). The sequences of the PCR products were deposited in GenBank with accession numbers MZ681931 (gapA), MZ681932 (gltA), MZ681933 (gyrB), and MZ681934 (rpoD). Phylogenetic analysis of multiple genes (Xu and Miller, 2013) was conducted with the maximum likelihood method using MEGA7. The sequences of our isolates and ten published sequences of P. syringae pv. coriandricola were clustered into one clade with a 100% confidence level. To confirm the pathogenicity of isolate YS2003200102, 2-month-old healthy coriander plants were inoculated by spraying the leaves with a bacterial suspension (108 CFU ml−1) at 28 °C incubation temperature and 70% relative humidity condition, and sterile distilled water was applied as a negative control treatment (Cazorla et al. 2005). Three replicates were conducted for every isolate, and each replicate included 6 coriander plants. After twelve days, only the inoculated leaves with bacterial suspension showed bacterial leaf spot resembling those observed on naturally infected coriander leaves. Cultures re-isolated from symptomatic leaves showed the same morphological characteristics and molecular traits as those initially isolated from infected leaves in the field. This bacterium was previously reported causing leaf spot of coriander in India and Spain (Gupta et al. 2013; Cazorla et al. 2005). To our knowledge, this is the first report of P. syringae pv. coriandricola causing leaf spot disease on coriander in China. Studies are needed on strategies to manage P. syringae pv. coriandricola in crops, because its prevalence may cause yield loss on coriander in China.


Plant Disease ◽  
2011 ◽  
Vol 95 (11) ◽  
pp. 1474-1474 ◽  
Author(s):  
T. E. Seijo ◽  
N. A. Peres

White bird of paradise (Strelitzia nicolai Regel & K. Koch) is a commonly grown ornamental in central and south Florida. Each summer of 2004 to 2007, a reoccurring disease was observed at a commercial nursery in central Florida. Diseased plants had brown, necrotic stripes between the lateral leaf veins, which usually appeared along the midvein and spread toward the leaf edge. Lesions developed on the youngest leaves as they emerged from the central whorl. During 2004 and 2005, 20 symptomatic leaves were sampled. A white, nonfluorescent bacterium was consistently isolated from symptomatic tissue. It induced a hypersensitive response (HR) on tomato, grew at 41°C, and was identified as a Acidovorax sp. based on fatty acid analysis and as Acidovorax avenae subsp. avenae by Biolog metabolic phenotype analysis (similarity 0.76 to 0.86). A partial 16S rRNA gene sequence (1,455 bp) (Accession No. EF418616) was identical to four sequences in the NCBI (National Center for Biotechnology Information) database: one from A. avenae subsp. avenae and three from A. avenae of undetermined subspecies. To confirm pathogenicity, a bacterial suspension (O.D590 = 0.1) was applied to fill the central whorl (~0.5 to 1 ml) of potted S. nicolai. Plants were incubated for 7 to 10 days inside plastic bags at ambient temperature. Plants were inoculated individually with five strains of A. avenae subsp. avenae, four from S. nicolai, and one from corn (ATCC19860). Two to nine plants per strain were inoculated in each experiment. All strains were tested at least twice and noninoculated control plants were included. Symptoms were reproduced on the emerging leaf of 50 to 100% of inoculated plants with all five A. avenae subsp. avenae strains. No symptoms were observed on the controls. The bacteria recovered from symptomatic tissue were confirmed to be A. avenae subsp. avenae. Corn seedlings were inoculated as described above, except that entire seedlings were sprayed. Water-soaked lesions along the length of older leaf blades developed in 4 to 7 days. Only the corn strain was pathogenic (>80% of seedlings symptomatic), indicating host specificity. To our knowledge, this is the first report of A. avenae subsp. avenae infecting S. nicolai. In 1971, Wehlburg (2) described the same symptoms on orange bird of paradise (S. reginae) as being caused by a nonfluorescent Pseudomonas sp. This report likely describes the same disease since the published description is consistent with symptoms caused by A. avenae subsp. avenae. The pathogen reported by Wehlburg (2) had one polar flagellum, reduced nitrate, produced oxidase and a HR, and utilized arabinose, but not sucrose or arginine, characteristics consistent with those of A. avenae subsp. avenae (1). The only difference was A. avenae subsp. avenae has a delayed positive starch hydrolysis (1), whereas Welhburg's strain was negative. This disease occurs mainly on young leaves when plants receive daily overhead irrigation. Incidence can be as high as 40%, occasionally causing mortality, but even mild symptoms affect appearance and reduce marketability as an ornamental. References: (1) N. W. Schaad et al. Laboratory Guide for Identification of Plant Pathogenic Bacteria. 3rd ed. The American Phytopathological Society, St. Paul, MN, 2001. (2) C. Wehlburg. Plant Dis. Rep. 55:447, 1971.


Plant Disease ◽  
2021 ◽  
Author(s):  
Zhiwei Song ◽  
Chen Yang ◽  
Rong Zeng ◽  
Shi-gang Gao ◽  
Wei Cheng ◽  
...  

Strawberry (Fragaria × ananassa Duch.) is a kind of fruit with great economic importance and widely cultivated in the world. From 2019 to 2020, a serious crown rot disease was sporadically observed in several strawberry cultivars including ‘Zhang Ji’, ‘Hong Yan’ and ‘Yue Xiu’ in Shanghai, China. Initially, water-soaked rot appeared in inner tissue of strawberry crown, then progressed into browning and hollowing symptoms accompanied with yellow discolorations of young leaves. To isolate and identify the causal agent, small pieces of tissue taken from ten diseased crowns were sterilized by 70% alcohol. The cut-up pieces were macerated and serially diluted. The dilutions were placed on nutrient agar (NA) medium. After incubation at 25°C for 4-5 days, the yellow bacterial colonies were tiny and were streaked on NA plate for purification. The colonies were yellow, mucoid, smooth-margined, and five independent representative colonies were used for further confirmation. To confirm the species identity of the bacterial, genomic DNA was extracted from the five representative isolates, and 16S rRNA gene was amplified and sequenced using universal primers 27F/1492R. The 16S rRNA sequence was deposited in GenBank (MW725235) and showed 99% nucleotide similarity with Xanthomonas fragariae strain LMG 708 (NR_026318). The isolate’s identity was further confirmed by X. fragariae-specific primers XF9/XF12 (Roberts et al. 1996). All five isolates could be detected by XF9/XF12 primer. To confirm Koch’s postulates, five healthy strawberry plants were placed in 1000 ml glass beakers by submerging the cutting wound in 50 ml the bacterial suspension of 108 CFU/ml. Five additional strawberry plants treated with sterilized water served as a control. The beakers containing inoculated plants were sealed with plastic film at 25°C. Water-soaked rot appeared on internal tissue of crown similar to those observed in the field within 10-12 days after inoculation, while the control samples remained healthy. The bacteria were re-isolated from rot of inoculated crowns, and confirmed by X. fragariae-specific primers XF9/XF12. X. fragariae has been reported to cause angular leaf spot on strawberry in China (Wang et al. 2017; Wu et al., 2020). It’s also found that X. fragariae could systematically infect crown tissue (Milholland et al. 1996; Mahuku and Goodwin, 1997). To our knowledge, this is the first report of X. fragariae causing strawberry crown rot in China. This report increased our understanding of X. fragariae, and showed that the spread of this disease might seriously threaten the development of strawberry industry in the future


Plant Disease ◽  
2012 ◽  
Vol 96 (11) ◽  
pp. 1690-1690 ◽  
Author(s):  
Y. Ibrahim ◽  
M. Al-Saleh

In the summer of 2009 and 2010, 18 sweet pepper fruit with blister-like, raised, rough lesions were collected from four greenhouses (total of 0.1 ha) in the Al-Kharj region of Saudi Arabia. All samples were collected from commercial crops of the sweet pepper cv. California Wonder. Disease incidence was ≤5%. Isolations were made from all diseased fruits. A small piece (3 mm2) of symptomatic tissue from pepper fruit was placed in a sterile mortar and macerated in sterile distilled water with a pestle. A loopful of bacterial suspension from each sample was streaked onto Tween B agar medium (3). Plates were incubated at 28°C for 48 h. Single yellow, circular, butyrous, shiny colonies were picked from the plates and transferred to nutrient agar plates containing 5% D+ glucose agar (NGA). Gram-negative, rod-shaped bacteria were consistently isolated from the fruit and 10 of the isolates were identified as Xanthomonas campestris pv. vesicatoria on the basis of morphological, physiological, and biochemical tests (1,2). The isolates were oxidase positive and levan negative, arginine-dihydrolase positive, and did not macerate potato discs. The isolates were also non-fluorescent, grew at 37 and 4°C but not at 40°C, did not liquefy gelatine or starch, but did produce H2S. The identity of the 10 bacterial strains was confirmed by PCR assay using primers RST65 and RST69 (4). Four-week old pepper plants (cv. California Wonder) were inoculated by spraying five potted plants with each isolate using a bacterial suspension (108 CFU/ml). Sterile distilled water was sprayed on an additional five plants as a negative control treatment. The bacterial isolates caused necrotic lesions, each with a yellow halo, on leaves of inoculated plants. Bacteria reisolated from the necrotic lesions using the technique previously described were identical to the original strains according to the morphological, cultural, and biochemical tests described above. Negative control plants inoculated with sterile distilled water did not show symptoms and no bacterial colonies were recovered from them. To our knowledge, this is the first report of bacterial spot on pepper fruits in Saudi Arabia. References: (2) R. F. Bradbury. Genus II Xanthomonas Dowson 1939. In: Bergey's Manual of Systematic Bacteriology, Vol. 1, Krieg, R., Holt, J. G. (Eds.), Williams & Wilkins Co., Baltimore, MD, 1987. (3) R. A. Lelliott and D. E. Stead. Methods for the Diagnosis of Bacterial Diseases of Plants. Blackwell Scientific Publications, Oxford, UK. (1) R. G. McGuire et al. Plant Dis 70:887, 1986. (4) A. Obradovic et al. Eur. J. Plant Pathol. 110:285, 2004.


Sign in / Sign up

Export Citation Format

Share Document