scholarly journals Genomic sequence resource of Alternaria alternata strain B3 causing leaf blight on Ophiopogon japonicus

Plant Disease ◽  
2020 ◽  
Author(s):  
Mingshuang Wang ◽  
Xin Hou ◽  
Huizhong Wang

The black spot of Ophiopogon japonicus is an economically important disease, which can result in significant losses of both yield and quality of this traditional Chinese medicinal plant. The disease is caused by the small-spored fungal pathogen Alternaria alternata, a necrotrophic fungus that ubiquitously distributed in the environment. Here, we present the draft whole-genome sequence of the A. alternata strain B3 that caused black spot on O. japonicus. The assembly consists of 76 contigs with an estimated genome size of 33.9Mb. Furthermore, we identified genes that may be associated with the pathogenicity, such as carbohydrate-active enzymes, secreted proteins, and secondary metabolites gene clusters. This genome resource will provide a useful source for future research on evolution of pathogenicity of A. alternata and phylogenomic analysis in delineating phylogenetic lineages within Alternaria.

Plant Disease ◽  
2020 ◽  
Author(s):  
Mingshuang Wang ◽  
Xiujun Luo ◽  
Huizhong Wang

The leaf anthracnose of Ophiopogon japonicus is an important disease that can significantly reduce the quality and economic value of this traditional Chinese medicinal plant. The disease is caused by Colletotrichum liriopes, a necrotrophic fungus that belongs to the Glomerellaceae family of the Sordariomycetes class. Here, we present the draft whole-genome sequence of the C. liriopes strain A2 that caused leaf anthracnose on O. japonicus. The assembly consists of 407 contigs with an estimated genome size of 53.1 Mb. Furthermore, we identified 670 carbohydrate-active enzymes, 1377 secreted proteins, and 60 secondary metabolite gene clusters, which may be associated with the pathogenicity of this pathogen. This genome resource will provide a valuable resource for future research on the pathogenesis of C. liriopes and comparative genome analyses within Colletotrichum.


Plant Disease ◽  
2021 ◽  
Author(s):  
Yiwen Xu ◽  
Zhenyan Cao ◽  
Yihua Yang ◽  
Jintian Tang ◽  
Yang Song ◽  
...  

Ophiopogon japonicus (Linn. f.) Ker-Gawl, a traditional Chinese medicinal plant, is widely cultured in China. The root of O. japonicus, is used as the main ingredient in many presriptions. It is rich in chemical components for steroidal saponins, homoisoflavonoids and polysaccharides, which have various pharmacological activities, such as cardiovascular protection, anti-inflammation and anti-diabetes (Chen. et al. 2016). In May and July for 2018 and 2019, the symptoms of black spot on O. japonicus were observed with an incidence of 40% in Cixi County, Zhejiang Province, China. The pathogen mainly infected leaves causing severe black spots, which resulted in a 28% yield loss per acre. At the early stage of the disease, the tip of the leaf began to turn yellow, then the discoloration gradually spread to the base of the leaf and finally the whole leaf turned reddish brown with visible black spot. Symptomatic leaves were cut into small pieces (1.0 cm × 1.0 cm) and disinfected successively by submersion in 75% ethanol for 30s and 1% NaClO for 30s under aseptic conditions. After rinsing with sterile water three times and air drying, segments were placed on potato dextrose agar (PDA), and incubated at 28 ℃ in dark for a week. Then, pathogen on the PDA were transferred onto potato carrot agar (PCA), and incubated at 23 ℃ under the condition of alternation of day (12 h) and night (12 h) for a week. Colonies on PDA were dark gray in the center surrounded by white to gray on the upper side, and black with white margins on the back of the plate. Colonies on PCA were grayish with sparse hyphae. The conidia were obclavate or ellipsoid, pale brown, with 3~8 transverse septa and 1~4 longitudinal septa. Conidiophores were septate, arising singly, and measured (17.0~81.0) × (8.0~23.5) μm, Most conidia had a conical or columnar beak, approximately (0~23.5) × (2.5~9.0) μm in size. According to morphological and cultural characteristics, these isolates were preliminarily identified as Alternaria alternata. A. alternata is one of the most typical plant pathogen, more than 95% of which facultatively parasitize on plants, causing disease in numerous crops. To further confirm identification of pathogens, the internal transcribed spacer region (ITS), translation elongation factor 1-α gene (EF-1α), RNA polymerase Ⅱ second largest subunit (RPB2), major allergen Alt a 1 gene (Alt a 1), Histon 3 gene (His) and plasma membrane ATPase (ATP)were amplified with primer pairs ITS1/ITS4, EF1-728F/EF1-986R, RPB2-7cr/RPB2-5f2, Alt-for/Alt-rev, His 3-F/His 3-R, ATP-F/ATP-R (Lawrence D.P. et al. 2013; Hong, S.G., et al. 2005). BLASTN analysis of NCBI using ITS (Accession NO. MW989987), Alt a1 (Accession NO. MW995953), EF-1α (Accession NO.MW995955), ATP (Accession NO.MW995957), His (Accession NO. MW995954) and RPB2 (Accession NO. MW995956) showed 100%, 100%, 97%, 99%, 99% and 97% identity to A. alternata MN249500.1, MN304714.1, MK637432.1, MK804115.1, MK460236.1, MK605888.1, respectively. To verify pathogenicity, healthy plants (1-year-old) of O. japonicus in ten pots were spray-inoculated with conidial suspension (1 × 106 conidia/ml). Ten plants, which were treated with sterile water, were used as the control. All plants were maintained in a climatic chamber (26 ± 1 ℃, 70–80% relative humidity and a photoperiod of 16:8 [L: D] h). Fourteen days later, all inoculated plants showed typical symptoms of black spot identical to those observed in the fields. Control plants remained symptomless and healthy. The pathogenicity analysis was repeated three times. Pathogens re-isolated from symptomatic plants were identified as A. alternata by morphology observation and sequence analysis. To our knowledge, this is the first report of black spot caused by A. alternata on O. japonicus in Zhejiang, China.


2020 ◽  
Author(s):  
Nemanja Kuzmanović ◽  
Enrico Biondi ◽  
Jörg Overmann ◽  
Joanna Puławska ◽  
Susanne Verbarg ◽  
...  

AbstractAllorhizobium vitis (formerly named Agrobacterium vitis or Agrobacterium biovar 3) is the primary causative agent of crown gall disease of grapevine worldwide. Whole-genome sequence comparisons and phylogenomic analysis of various All. vitis strains clearly indicated that All. vitis is not a single species, but represents a species complex composed of at least four genomic species. Thus, we amended the description of All. vitis which now refers to a restricted group of strains within the All. vitis complex (i.e. All. vitis sensu stricto) and proposed a description of a novel species All. ampelinum sp. nov. The type strain of All. vitis sensu stricto remains the existing type strain of All. vitis, K309T (= NCPPB 3554T =HAMBI 1817T = ATCC 49767T = CIP 105853T = ICMP 10752T = IFO 15140T = JCM 21033T = LMG 8750T = NBRC 15140T). The type strain of All. ampelinum sp. nov. is S4T (= DSM 112012T = ATCCBAA-846T). This genome-based classification was supported by differentiation of strains based on a MALDI-TOF MS analysis. We also identified gene clusters specific for All. vitis species complex, All. vitis sensu stricto and All. ampelinum, and attempted to predict their function and their role in ecological diversification of these clades, some of which were experimentally validated. Functions of All. vitis species complex-specific genes convergently indicate a role in adaptation to different stresses, including exposure to aromatic compounds. Similarly, All vitis sensu stricto-specific genes also confer the ability to degrade 4-hydroxyphenylacetate and a putative compound related to gentisic acid, while All. ampelinum-specific genes have putative functions related to polyamine metabolism and nickel assimilation. This suggests that these species have differentiated ecologies, each relying on specialized nutrient consumption or toxic compound degradation to adapt to their respective niche. Moreover, our genome-based analysis indicated that Allorhizobium and the “R. aggregatum complex” represent separate genera of the family Rhizobiaceae.


2021 ◽  
Vol 12 ◽  
Author(s):  
Ke Huang ◽  
Jianming Tang ◽  
Yong Zou ◽  
Xiangcheng Sun ◽  
Jianbin Lan ◽  
...  

Alternaria alternata is a pathogen in a wide range of agriculture crops and causes significant economic losses. A strain of A. alternata (Y784-BC03) was isolated and identified from “Hongyang” kiwifruit and demonstrated to cause black spot infections on fruits. The genome sequence of Y784-BC03 was obtained using Nanopore MinION technology. The assembled genome is composed of 33,869,130bp (32.30Mb) comprising 10 chromosomes and 11,954 genes. A total of 2,180 virulence factors were predicted to be present in the obtained genome sequence. The virulence factors comprised genes encoding secondary metabolites, including non-host-specific toxins, cell wall-degrading enzymes, and major transcriptional regulators. The predicted gene clusters encoding genes for the biosynthesis and export of secondary metabolites in the genome of Y784-BC03 were associated with non-host-specific toxins, including cercosporin, dothistromin, and versicolorin B. Major transcriptional regulators of different mycotoxin biosynthesis pathways were identified, including the transcriptional regulators, polyketide synthase, P450 monooxygenase, and major facilitator superfamily transporters.


2020 ◽  
pp. PHYTO-06-20-024
Author(s):  
Jingling Liang ◽  
Sai Wang ◽  
Ayizekeranmu Yiming ◽  
Luoyi Fu ◽  
Wenhan Nie ◽  
...  

Pseudomonas is a complex genus with increasing numbers of new species. Recently, we isolated Pseudomonas sp. strain L22-9, which showed antifungal activity against several fungal phytopathogens. Here, we report the whole genome sequence of strain L22-9. Genomic analysis revealed that strain L22-9 contains one circular DNA chromosome of 6,730,360 bp length with 60.9% GC content. Bioinformatics analysis identified gene clusters in the genome that synthesize antimicrobial metabolites such as 2,4-diacetylphloroglucinol synthesis and hydrogen cyanide synthase. Further analysis suggests that strain L22-9 is a novel species of the genus Pseudomonas. This genome would be a valuable resource for future research in phytopathology.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
M. Aftab Uddin ◽  
Shammi Akter ◽  
Mahbuba Ferdous ◽  
Badrul Haidar ◽  
Al Amin ◽  
...  

AbstractHere we report a jute endophyte Staphylococcus hominis strain MBL_AB63 isolated from jute seeds which showed promising antimicrobial activity against Staphylococcus aureus SG511 when screening for antimicrobial substances. The whole genome sequence of this strain, annotated using BAGEL4 and antiSMASH 5.0 to predict the gene clusters for antimicrobial substances identified a novel antimicrobial peptide cluster that belongs to the class I lantibiotic group. The predicted lantibiotic (homicorcin) was found to be 82% similar to a reported peptide epicidin 280 having a difference of seven amino acids at several positions of the core peptide. Two distinct peaks obtained at close retention times from a RP-HPLC purified fraction have comparable antimicrobial activities and LC–MS revealed the molecular mass of these peaks to be 3046.5 and 3043.2 Da. The presence of an oxidoreductase (homO) similar to that of epicidin 280- associated eciO or epilancin 15X- associated elxO in the homicorcin gene cluster is predicted to be responsible for the reduction of the first dehydrated residue dehydroalanine (Dha) to 2-hydroxypropionate that causes an increase of 3 Da mass of homicorcin 1. Trypsin digestion of the core peptide and its variant followed by ESI–MS analysis suggests the presence of three ring structures, one in the N-terminal and other two interlocking rings at the C-terminal region that remain undigested. Homicorcin exerts bactericidal activity against susceptible cells by disrupting the integrity of the cytoplasmic membrane through pore formation as observed under FE-SEM.


Antibiotics ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 22
Author(s):  
Nasim Safaei ◽  
Yvonne Mast ◽  
Michael Steinert ◽  
Katharina Huber ◽  
Boyke Bunk ◽  
...  

Antibiotic producers have mainly been isolated from soil, which often has led to the rediscovery of known compounds. In this study, we identified the freshwater snail Physa acuta as an unexplored source for new antibiotic producers. The bacterial diversity associated with the snail was characterized by a metagenomic approach using cultivation-independent high-throughput sequencing. Although Actinobacteria represented only 2% of the bacterial community, the focus was laid on the isolation of the genus Streptomyces due to its potential to produce antibiotics. Three Streptomyces strains (7NS1, 7NS2 and 7NS3) were isolated from P. acuta, and the antimicrobial activity of the crude extracts were tested against a selection of Gram-positive and Gram-negative bacteria and fungi. 7NS3 showed the strongest activity against Gram-positive bacteria and, thus, was selected for genome sequencing and a phylogenomic analysis. 7NS3 represents a novel Streptomyces species, which was deposited as Streptomyces sp. DSM 110735 at the Leibniz Institute-German Collection of Microorganisms and Cell Cultures (DSMZ). Bioassay-guided high-performance liquid chromatography (HPLC) and high-resolution electrospray ionization-mass spectrometry (HR-ESI-MS) analyses of crude extract fractions resulted in the detection of four compounds, one of which matched the compound characteristics of emycin A, an angucycline-like aromatic polyketide. Genome mining studies based on the whole-genome sequence of 7NS3 resulted in the identification of a gene cluster potentially coding for emycin A biosynthesis. Our study demonstrates that freshwater snails like P. acuta can represent promising reservoirs for the isolation of new antibiotic-producing actinobacterial species.


2018 ◽  
Vol 63 (1) ◽  
Author(s):  
Timothy J. Johnson ◽  
Ehud Elnekave ◽  
Elizabeth A. Miller ◽  
Jeannette Munoz-Aguayo ◽  
Cristian Flores Figueroa ◽  
...  

ABSTRACTThe fluoroquinolone-resistant sequence type 1193 (ST1193) ofEscherichia coli, from the ST14 clonal complex (STc14) within phylogenetic group B2, has appeared recently as an important cause of extraintestinal disease in humans. Although this emerging lineage has been characterized to some extent using conventional methods, it has not been studied extensively at the genomic level. Here, we used whole-genome sequence analysis to compare 355 ST1193 isolates with 72 isolates from other STs within STc14. Using core genome phylogeny, the ST1193 isolates formed a tightly clustered clade with many genotypic similarities, unlike ST14 isolates. All ST1193 isolates possessed the same set of three chromosomal mutations conferring fluoroquinolone resistance, carried thefimH64allele, and were lactose non-fermenting. Analysis revealed an evolutionary progression from K1 to K5 capsular types and acquisition of an F-type virulence plasmid, followed by changes in plasmid structure congruent with genome phylogeny. In contrast, the numerous identified antimicrobial resistance genes were distributed incongruently with the underlying phylogeny, suggesting frequent gain or loss of the corresponding resistance gene cassettes despite retention of the presumed carrier plasmids. Pangenome analysis revealed gains and losses of genetic loci occurring during the transition from ST14 to ST1193 and from the K1 to K5 capsular types. Using time-scaled phylogenetic analysis, we estimated that current ST1193 clades first emerged approximately 25 years ago. Overall, ST1193 appears to be a recently emerged clone in which both stepwise and mosaic evolution have contributed to epidemiologic success.


Sign in / Sign up

Export Citation Format

Share Document