Screening for susceptibility of Macadamia to E. fornicatus and its fungal symbiont Fusarium euwallaceae.

Plant Disease ◽  
2020 ◽  
Author(s):  
Dee Twiddy ◽  
Shawn Fell ◽  
Z. Wilhelm Wilhelm de Beer ◽  
Gerda Fourie

The polyphagous shothole borer (Euwallacea fornicatus, PSHB), an ambrosia beetle, with its fungal symbiont, Fusarium euwallaceae, is responsible for Fusarium Dieback (FD) in a wide range of woody hosts. In 2019, the first suspected case of E. fornicatus was reported in macadamia in South Africa. The aims of this study were to confirm the E. fornicatus report and thereafter to assess the susceptibility of commercially planted macadamia cultivars to FD caused by F. euwallaceae. The identities of the beetle and associated fungal symbionts were confirmed by means of DNA sequence analysis of the 28S ribosomal large subunit gene for beetles and the internal transcribed spacer region for fungi. Isolates identified as Fusarium species were further characterised by phylogenetic analysis of the translation elongation factor 1α and the β-tubulin gene regions. Thereafter, Koch’s postulates regarding F. euwallaceae were fulfilled on a mature Macadamia integrifolia tree planted at the experimental farm of the University of Pretoria. In order to determine susceptibility against FD, additional cultivar screening was conducted on nine commercially planted cultivars by means of pathogenicity trials using sterilized or inoculated toothpicks inserted into detached branches. Detached branch inoculations showed no significant lesion development six weeks post inoculation, except for cultivar 816. The restricted growth of F. euwallaceae observed in macadamia tissues therefore suggests that macadamia may not be a suitable host for F. euwallaceae and that the threat of FD in macadamia in the event of E. fornicatus infestation is less than for other E. fornicatus hosts. Future work on beetle attraction to macadamia is recommended for a more comprehensive understanding of the interaction between E. fornicatus and its fungal symbionts and macadamia.

Phytotaxa ◽  
2021 ◽  
Vol 489 (2) ◽  
pp. 121-139
Author(s):  
GILVANA F. GUALBERTO ◽  
ARICLÉIA DE M. CATARINO ◽  
THIAGO F. SOUSA ◽  
JEFERSON C. CRUZ ◽  
ROGÉRIO E. HANADA ◽  
...  

Pestalotioid species (Pestalotiopsis, Pseudopestalotiopsis and Neopestalotiopsis) cause extremely damaging diseases in a wide range of hosts across the word. Recently, pestalotioid strains isolated from damaged guarana leaf tissue were subject to morphological and molecular characterization. Six monosporic isolates were obtained and analysed based on the following conidial characters: length, width, septation, absence or presence of basal appendage, number and length of apical appendages. For phylogenetic inference, sequences of the Internal Transcribed Spacer region (ITS), partial sequences of the genes encoding the translation elongation factor 1-α (tef1-α) and β-tubulin (tub2) were used. Three out of six strains analysed were identified as Neopestalotiopsis formicarum, while the three other isolates are described here as a new species of Pseudopestalotiopsis, named Ps. gilvanii sp. nov.. The pathogenicity of N. formicarum and Ps. gilvanii were confirmed following Koch’s postulate. Besides guarana, the potential of N. formicaram and Ps. gilvanii to cause diseases in other economically important tropical plants were investigated. Ps. gilvanii was pathogenic to açaí palms (Euterpe oleracea, E. precatoria), and oil palm (Elaeis guineensis), but not to banana (Musa paradisiaca var. pacovan) and rubber trees (Hevea brasiliensis). N. formicarum was not pathogenic to rubber trees but was pathogenic to other species tested. To our knowledge this is the first report of N. formicarum as a plant pathogen in the guarana plant, and Ps. gilvanii as novel plant pathogen capable of causing disease in important plant crops from tropical regions.


Toxins ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 297 ◽  
Author(s):  
Maryam Fallahi ◽  
Hossein Saremi ◽  
Mohammad Javan-Nikkhah ◽  
Stefania Somma ◽  
Miriam Haidukowski ◽  
...  

Fusarium species are among the most important fungal pathogens of maize, where they cause severe reduction of yield and accumulation of a wide range of harmful mycotoxins in the kernels. In order to identify the Fusarium species and their mycotoxin profiles associated to maize ear rot and kernel contamination in Iran, a wide sampling was carried out from field in ten major maize-producing provinces in Iran, during 2015 and 2016. From 182 samples of maize kernels, 551 strains were isolated and identified as belonging to Fusarium genus. Among the 234 representative strains identified at species level by translation elongation factor (EF-1α) sequences, the main Fusarium species were F. verticillioides and F. proliferatum, together representing 90% of the Iranian Fusarium population, and, to a lesser extent, F. incarnatum equiseti species complex (FIESC), F. thapsinum and F. redolens. Fumonisin (FBs) production by F. verticillioides and F. proliferatum representative strains was analysed, showing that all strains produced FB1. None of F. verticillioides strains produced FB2 nor FB3, while both FB2 and FB3 were produced only by F. proliferatum. Total mean of FBs production by F. verticillioides was higher than F. proliferatum. The occurrence of different Fusarium species on Iranian maize is reason of great concern because of the toxigenic risk associated to these species. Moreover, the diversity of the species identified increases the toxigenic risk associated to Fusarium contaminated maize kernels, because of the high possibility that a multi-toxin contamination can occur with harmful consequences on human and animal health.


2020 ◽  
Vol 11 ◽  
Author(s):  
Indunil C. Senanayake ◽  
Jayarama D. Bhat ◽  
Ratchadawan Cheewangkoon ◽  
Ning Xie

A survey of bambusicolous fungi in Bijiashan Mountain Park, Shenzhen, Guangdong Province, China, revealed several Arthrinium-like taxa from dead sheaths, twigs, and clumps of Bambusa species. Phylogenetic relationships were investigated based on morphology and combined analyses of the internal transcribed spacer region (ITS), large subunit nuclear ribosomal DNA (LSU), beta tubulin (β-tubulin), and translation elongation factor 1-alpha (tef 1-α) gene sequences. Based on morphological characteristics and phylogenetic data, Arthrinium acutiapicum sp. nov. and Arthrinium pseudorasikravindrae sp. nov. are introduced herein with descriptions and illustrations. Additionally, two new locality records of Arthrinium bambusae and Arthrinium guizhouense are described and illustrated.


2021 ◽  
Vol 60 (1) ◽  
pp. 79-100
Author(s):  
Vladimiro GUARNACCIA ◽  
Jan VAN NIEKERK ◽  
Pedro CROUS ◽  
Marcelo SANDOVAL-DENIS

Citrus is one of the most important fruit crops cultivated in South Africa. Internationally, citrus dry root rot is a common disease in major citrus production areas. Several abiotic and biotic factors are involved in disease development, in which Neocosmospora species are important biotic agents. The diversity of Neocosmospora species associated with dry root rot symptoms of Citrus trees cultivated in South Africa was evaluated using morphological and molecular analyses. Multi-locus analysis was conducted, based on fragments of seven loci including: ATP citrate lyase (acl1), calmodulin (cal), internal transcribed spacer region of the rRNA (ITS), large subunit of the rRNA (LSU), RNA polymerase largest subunit (rpb1), RNA polymerase second largest subunit (rpb2), and translation elongation factor 1-alpha (tef1). A total of 62 strains representing 11 Neocosmospora species were isolated from crowns, trunks and roots of citrus trees affected by dry root rot, as well as from soils sampled in affected citrus orchards. The most commonly isolated taxa were N. citricola, N. ferruginea and N. solani, while rarely encountered taxa included N. brevis, N. crassa, N. hypothenemi and N. noneumartii. Furthermore, four Neocosmospora species are also newly described, namely N. addoensis, N. citricola, N. gamtoosensis and N. lerouxii.


Plants ◽  
2020 ◽  
Vol 9 (6) ◽  
pp. 754
Author(s):  
Nahid Espargham ◽  
Hamid Mohammadi ◽  
David Gramaje

Citrus trees with cankers and dieback symptoms were observed in Bushehr (Bushehr province, Iran). Isolations were made from diseased cankers and branches. Recovered fungal isolates were identified using cultural and morphological characteristics, as well as comparisons of DNA sequence data of the nuclear ribosomal DNA-internal transcribed spacer region, translation elongation factor 1α, β-tubulin, and actin gene regions. Dothiorella viticola, Lasiodiplodia theobromae, Neoscytalidium hyalinum, Phaeoacremonium (P.) parasiticum, P. italicum, P. iranianum, P. rubrigenum, P. minimum, P. croatiense, P. fraxinopensylvanicum, Phaeoacremonium sp., Cadophora luteo-olivacea, Biscogniauxia (B.) mediterranea, Colletotrichum gloeosporioides, C. boninense, Peyronellaea (Pa.) pinodella, Stilbocrea (S.) walteri, and several isolates of Phoma, Pestalotiopsis, and Fusarium species were obtained from diseased trees. The pathogenicity tests were conducted by artificial inoculation of excised shoots of healthy acid lime trees (Citrus aurantifolia) under controlled conditions. Lasiodiplodia theobromae was the most virulent and caused the longest lesions within 40 days of inoculation. According to literature reviews, this is the first report of L. theobromae and N. hyalinum on citrus in Iran. Additionally, we report several Phaeoacremonium species, S. walteri, Pa. pinodella and C. luteo-olivacea on citrus trees for the first time in the world.


Plant Disease ◽  
2020 ◽  
Author(s):  
Swarnalatha Moparthi ◽  
Mary Eileen Burrows ◽  
Josephine Mgbechi-Ezeri ◽  
Bright Agindotan

Root rot caused by Fusarium species is a major problem in the pulse growing regions of Montana. Fusarium isolates (n=112) were obtained from seeds and/or roots of chickpea, dry pea, and lentil. Isolates were identified by comparing the sequences of the internal transcribed spacer region and the translation elongation factor 1-α in Fusarium-ID database. Fusarium avenaceum was the most abundant species (28%), followed by F. acuminatum (21%), F. poae (13%), F. oxysporum (8%), F. culmorum (6%), F. redolens (6%), F. sporotrichioides (6%), F. solani (4%), F. graminearum (2%), F. torulosum (2%) and F. tricinctum (0.9%). The aggressiveness of a subset of 50 isolates that represent various sources of isolation was tested on three pulse crops and two cereal crops. Nonparametric analysis of variance conducted on ranks of disease severity indicated that F. avenaceum and F. solani isolates were highly aggressive on pea and chickpea. In lentil, F. avenaceum and F. culmorum were highly aggressive. In barley, F. avenaceum, F. solani, F. culmorum, and F. graminearum were highly aggressive. In wheat, F. avenaceum, F. graminearum, and F. culmorum were highly aggressive. Two F. avenaceum isolates were highly aggressive across all the crops tested and found to be cross pathogenic. One isolate of F. culmorum and an isolate of F. graminearum obtained from chickpea and lentil seed were highly aggressive on barley and wheat. The results indicate that multiple Fusarium spp. from seeds and roots can cause root rot on both pulse and cereal crops. Rotating these crops may still lead to an increase in inoculum levels, making crop rotation limited in efficacy as a disease management strategy.


Plant Disease ◽  
2016 ◽  
Vol 100 (12) ◽  
pp. 2455-2464 ◽  
Author(s):  
J. R. Úrbez-Torres ◽  
F. Castro-Medina ◽  
S. R. Mohali ◽  
W. D. Gubler

Several species in the Botryosphaeriaceae family cause wood stain, cankers, and dieback of trunks and branches in a wide range of forest tree species. The aim of this study was to characterize the botryosphaeriaceous fungi associated with decline symptoms observed in Acacia mangium and Pinus caribaea var. hondurensis, two economically important forest tree species grown in commercial plantations in Venezuela. Fungi isolated from symptomatic samples collected from both hosts in commercial sites were identified based on their morphology and DNA sequences of the internal transcribed spacer region (ITS1-5.8S-ITS2) and part of the β-tubulin and translation elongation factor 1-α genes. Lasiodiplodia theobromae and L. venezuelensis were routinely isolated from A. mangium and P. caribaea var. hondurensis. Additionally, the novel species Diplodia guayanensis was isolated and characterized from symptomatic and asymptomatic tissues of A. mangium. Multigene phylogenetic analyses along with restriction fragment length polymorphism studies further supported the identification of these species. A pathogenicity study was conducted under natural conditions and 12 weeks after inoculation all Botryosphaeriaceae spp. were shown to be highly virulent on A. mangium. Contrary, no lesions were observed in the wood of P. caribaea var. hondurensis when inoculated with L. theobromae and L. venezuelensis. However, both species were consistently reisolated from the asymptomatic tissue beyond the inoculation point. This study contributes to a better understand the role that species in the Botryosphaeriaceae play on disease symptoms and dieback of A. mangium and P. caribaea var. hondurensis from plantations in eastern Venezuela.


MycoKeys ◽  
2021 ◽  
Vol 77 ◽  
pp. 65-95
Author(s):  
Wenxiu Sun ◽  
Shengting Huang ◽  
Jiwen Xia ◽  
Xiuguo Zhang ◽  
Zhuang Li

Diaporthe species have often been reported as plant pathogens, endophytes and saprophytes, commonly isolated from a wide range of infected plant hosts. In the present study, twenty strains obtained from leaf spots of twelve host plants in Yunnan Province of China were isolated. Based on a combination of morphology, culture characteristics and multilocus sequence analysis of the rDNA internal transcribed spacer region (ITS), translation elongation factor 1-α (TEF), β-tubulin (TUB), calmodulin (CAL), and histone (HIS) genes, these strains were identified as eight new species: Diaporthe camelliae-sinensis, D. grandiflori, D. heliconiae, D. heterostemmatis, D. litchii, D. lutescens, D. melastomatis, D. pungensis and two previously described species, D. subclavata and D. tectonendophytica. This study showed high species diversity of Diaporthe in tropical rain forests and its hosts in south-western China.


Zootaxa ◽  
2020 ◽  
Vol 4808 (1) ◽  
pp. 38-50
Author(s):  
DAVID M ROBERTS ◽  
BRIAN BOAG ◽  
FRASER HUNTER ◽  
JAMIE TARLTON ◽  
KATRIN MACKENZIE ◽  
...  

Arthurdendyus triangulatus (Dendy, 1894) is a land planarian native to New Zealand which has become established in the United Kingdom and the Faroe Islands during the last 60 years. The species has become prevalent and widely established in Scotland mediated by human activity mostly through the exchange of plants and associated soil. As a predator of earthworms, concerns regarding both the direct impact on earthworm abundance and diversity and the indirect impact on those birds and mammals that have earthworms as a primary dietary component led to A. triangulatus being the subject of both national and EU regulation. Whilst much is known regarding the ecology of A. triangulatus there is a significant knowledge gap regarding the genetic variability of the species. Using four DNA target regions cytochrome oxidase (CoI), elongation factor (EF), internal transcribed spacer region (ITS-1) and large subunit (LSU), we characterised the genetic variability of A. triangulatus populations across its full geographic range in Scotland and included a few populations from New Zealand, England and Northern Ireland.                Two DNA regions, ITS-1 and CoI, revealed inter-population variability yielding well supported genetic structure in predominantly Scottish populations. We also identified considerable intra-specific and intra-individual heterogeneity in both ribosomal and mitochondrial regions, including the prevalence of pseudo-gene nuclear encoded mitochondrial DNA (Numt), the latter not previously reported for Platyhelminthes. Furthermore, given the presence of multiple ITS-1 haplotypes in individual specimens of A. triangulatus it is not possible to make definitive comment to support previously published findings that A. triangulatus was subjected to multiple introductions into the UK.


2013 ◽  
Vol 6 (2) ◽  
pp. 137-150 ◽  
Author(s):  
M. Davari ◽  
S.H. Wei ◽  
A. Babay-Ahari ◽  
M. Arzanlou ◽  
C. Waalwijk ◽  
...  

The diversity and prevalence of Fusarium species and their chemotypes on wheat in the North-West and North of Iran was determined. Wheat in these areas is severely affected by Fusarium head blight, with Fusarium graminearum as prevalent species causing 96% of the infections in the North-West and 50% in the Northern provinces. Fungal isolates were identified based on morphological characters and sequences of the internal transcribed spacer region, and parts of translation elongation factor 1-? and RNA polymerase subunit II sequences. Phylogenetic and phylogeographic analyses show little haplotype variation between the F. graminearum strains collected from the different locations, but the isolates differ significantly in their trichothecene chemotypes as determined with a multilocus genotyping assay. F. graminearum strains producing 15-acetyldeoxynivalenol were abundant in Ardabil (North-West of Iran), while in Golestan province (North of Iran) at the other side of the Caspian Sea especially nivalenol producing strains and a variety of other Fusarium species were observed. Strains producing 3-acetyldeoxynivalenol were rarely found in both areas. This is the first detailed study on Fusarium infections in Iranian wheat, showing large differences in prevalent etiological agents and in mycotoxin chemotypes geographically.


Sign in / Sign up

Export Citation Format

Share Document