scholarly journals First report of tomato fruit blotch virus infecting tomatoes in Brazil

Plant Disease ◽  
2022 ◽  
Author(s):  
Erich Yukio Tempel Nakasu ◽  
Tatsuya Nagata ◽  
Alice Inoue-Nagata

Recently, a new blunervirus was reported in tomatoes showing fruit chlorotic lesions. This virus, named tomato fruit blotch virus (ToFBV), was found associated with the tomato fruit blotch disease in Italy and Australia, even though Koch’s postulates were not fulfilled and no viral particles were seen in leaf dips observed with an electron microscope (Ciuffo et al. 2020). In December 2019, symptoms of circular or irregular chlorotic blotches were observed in tomato fruits in an organic farm in Distrito Federal, Brazil. Five different tomato cultivars (2100 plants of cv. Sweet grape, 1700 of Giacomo, 560 of Grazianni, 160 of Tropical, and 160 of DRC 5640) were being grown in two greenhouses and all of them presented the symptoms in at least one fruit, particularly in older fruits. No virus-like symptoms were observed in young and middle leaves, but older leaves could not be examined because they were removed as a routine activity of the farm; and also due to the moderate infestation of the tomato russet mite Aculops lycopersici, associated with leaf and stem necrosis. No viral particles were observed in an electron microscope analysis of symptomatic fruit tissues, and sap inoculation and grafting of stems did not produce any symptom in indicator plants. Two young and asymptomatic plants with the first fruits still in development were removed from another greenhouse of the farm and transported to our greenhouse, but the typical blotch symptoms neither appeared in the fruits nor the necrosis symptoms in the leaves. Serological tests performed for all collected leaf and fruit samples using antibodies produced in-house against common tomato-infecting tospoviruses and potyviruses were negative, as well as a polymerase chain reaction (PCR) detection test for begomoviruses (Rojas et al. 1993). Total RNA from newly collected samples consisting of one symptomatic fruit sample and five asymptomatic leaf samples from distinct plants were individually extracted using RNeasy Plant Mini Kit (Qiagen, Hilden, Germany) and pooled for next generation sequencing (NGS). The library was constructed using TruSeq Stranded Total RNA with Ribo-Zero Plant (Illumina, San Diego, USA) and sequenced at Macrogen, Inc. (Seoul, South Korea) in an Illumina Novaseq6000 platform. The 4,621,977,958 reads obtained were trimmed using Trimommatic 0.35 (Bolger et al. 2014) and contigs were assembled using Velvet (Zerbino and Birney 2008). Following tblastx analysis on Geneious 9.1.8 (Biomatters Ltd.) and BLAST on the NCBI platform (Altschul et al. 1990), seven contigs matching tomato chlorosis virus (ToCV) and five contigs matching ToFBV were identified. Sequences for each of the four genome components of ToFBV (MK517477-MK517480) already present in databases were used as reference using the Map to Reference function in Geneious. A total of 338,402, 78,039, 555,302 and 461,474 reads mapped to virus genome components 1 to 4, respectively, with >99% coverage for each. Four final consensus sequences were used for BLAST analyses on NCBI and presented 97 to 99.7 % nucleotide identity with those used for mapping. These sequences were deposited in GenBank as isolate MAL under accession numbers MW546267 (RNA 1, 5770 nt), MW546268 (RNA 2, 3612 nt), MW546269 (RNA 3, 2826 nt) and MW546270 (RNA 4, 1950 nt). The primer pair Bluner1F (5’-ATTCCTGTTCCTTCGGATAAACTCGT-3’) and Bluner1R (5’-CACACGTGCAGGAAATGGAAAGA-3’) directed to RNA 1 was used to specifically detect the virus. Three leaf samples and two fruit samples, each from a different plant with typical symptoms, were tested positive for ToFBV and negative using ToCV-specific primers in RT-PCR (Dovas et al. 2002). This confirmed that although some plants pooled in the HTS library were infected with ToCV, the chlorotic blotch symptom was clearly associated with the presence of ToFBV. Furthermore, the ~0.5 kbp amplicon for ToFBV-specific primers from one randomly selected sample was sequenced with both primers and the resulting sequence shared 100% nt identity with the RNA 1 of ToFBV isolate Fondi2018 from Italy (MK517477). Then, the virus was detected in the tissue from the surface of another fruit, but not from its internal part, suggesting a superficial infection. The findings presented here are of high phytosanitary significance, given the strong symptoms associated with tomato fruit blotch disease and the identification of ToFBV in the tomato samples from Brazil.

Plant Disease ◽  
2012 ◽  
Vol 96 (5) ◽  
pp. 769-769 ◽  
Author(s):  
J. Víchová ◽  
B. Staňková ◽  
R. Pokorný

Apple (Malus domestica Borkh.) is a fruit traditionally grown in the Czech Republic, and tomatoes (Solanum lycopersicum Mill.), too, are widely raised in this region. Colletotrichum acutatum J. H. Simmonds is a polyphagous fungal plant pathogen. Earlier, this pathogen caused disease on strawberry in the Czech Republic (2), and now it has become an important pathogen on safflower (4). During the 2010 harvest, anthracnose symptoms were noticed on the fruits of apple and tomato. Infected apples fruits (localities Velká Bíteš and Znojmo) and tomatoes (localities Velká Bíteš and Žabčice) were collected. Typical symptoms on fruit surfaces were round, brown, shriveled and sunken spots, 1.2 to 2.0 cm, with orange conidial masses appearing on the spots. A fungus was isolated from each host on potato dextrose agar and cultured at 25 ± 2°C for 10 days. Mycelium was superficial, partly immersed, and white to gray with occurrence of orange conidial masses. Conidia of the tomato and apple isolates were colorless and fusiform. The size of conidia from the apple and tomato isolates, respectively, ranged from 11 to 15 × 2.5 to 3.5 μm and 11 to 16 × 2.5 to 4 μm. Morphological characteristics suggested that the isolated fungi was a Colletotrichum sp. To fulfill Koch's postulates, healthy tomato and apple fruits were disinfected with 3% sodium hypochlorite for 2 min and rinsed in sterile distilled water. Fruits were pinpricked with a sterile needle and 10 μl of a spore suspension (1 × 105 conidia ml–1) was inoculated by pipetting into the wound. Control fruits were treated with sterile distilled water. The fruits were transferred to a growth cabinet and maintained at a temperature of 25 ± 2°C, relative humidity of 70 ± 5%, and a photoperiod of 12 h. Similar disease symptoms as in the collected fruits were observed on tomato fruits at 7 days and apple fruits at 20 days after inoculation, while no symptoms appeared on control fruits. The pathogen was reisolated from infected fruits. Species determination of the isolates was confirmed by PCR. Specific primers designed in region ITS1, the 5.8S RNA gene, and region ITS2 of the pathogen DNA were selected. Specific primers CaInt2 and ITS4 were used to identify C. acutatum (3), and primers CgInt and ITS4 were used to determine C. gloeosporioides isolate CCM 177 (1), which was used as a control. Our isolates yielded PCR products (490 bp) only with primers designed for C. acutatum. The C. gloeosporioides isolate yielded a PCR product (450 bp) only with CgInt and ITS4 primers. PCR products were sequenced and identified with the BLAST program. The sequence of the tomato fruit isolate (Accession No. JN676199) and apple fruit isolate (Accession No. JN676198) matched with 100% similarity to the C. acutatum sequences in GenBank. The control isolate of C. gloeosporioides matched 100% to sequences AJ749682 and AJ749692. To our knowledge, this is the first report of C. acutatum on tomato and apple fruits in the Czech Republic. This pathogen can endanger the production and storage of apples and tomatoes in this region. References: (1) P. R. Mills et al. FEMS Microbiol. Lett. 98:137, 1992. (2) D. Novotný et al. Plant Dis. 91:1516, 2007. (3) S. Sreenivasaprasad et al. Plant Pathol. 45:650, 1996. (4) J. Víchová et al. Plant Dis. 95:79, 2011.


Author(s):  
S. Nizamani ◽  
A. A. Khaskheli ◽  
A. M. Jiskani ◽  
S. A. Khaskheli ◽  
A. J. Khaskheli ◽  
...  

Background: The post-harvest tomato fruit rot disease is common threat to the tomato fruit, causing huge economic loss as revealed by (GOP, 2018). The present study was conducted for isolatation and identification of causative agent of tomato fruit rot in order to formulate the proper management stretegies. Methods: Study was conducted in three phases. Phase one included collection of tomato fruit samples from vicinity of Tandojam. In phase two pathogens were isolated from the samples at laboratory, while in the phase three pathogens were identified using standard procedures. Result: The experimental results indicated Alternaria solani as the main cause of post-harvest tomato fruit rot. The symptoms observed were presence of brown to black rot lesions on tomato fruits with distinct rings ranging from small pin-heads to whole surface of fruit. A total of six different fungi viz., Alternaria alternata, Aspergillus niger, Alternaria solani, Geotrichum candidum, Fusarium oxysporum and Rhizopus stolonifer were found to be associated with post harvest tomato rot. Significantly higher infection was recorded for A. solani (53.667%) followed by A. niger (16.333%) and G. candidum (13.00%). The lowest infection percentage was observed for F. oxysporum (2.333%), followed by A. alternata (4.00%) and R. stolonifer (9.00%). A. solani produced aerial mycelium with yellowish to reddish diffusible pigments. A. niger cultures were typically black and colonies were initially whitish to yellow and later became brown to black in colour. G. candidum produced white and nonaerial colonies. F. oxysporum produced circular, aerial mycelium initially white, later changed to light pink. R. stolonifer produced whitish to grey fuzzy colonies.


1996 ◽  
Vol 121 (3) ◽  
pp. 380-383 ◽  
Author(s):  
E.V. Wann

Tissue firmness of ripe tomatoes is controlled by cell wall integrity of the fruit tissue and by the enzymatic softening that normally occurs during ripening. This study was conducted to determine the physical characteristics of cells and tissues of mature green (MG) and ripe fruit that might account for differences in firmness between `Rutgers' (normal), `Flora-Dade' (Firm), and two mutant lines called high-pigment (T4065 hp) and dark-green (T4099 dg), both of which possess extra firm fruit. Fruit samples were tested for resistance to a force applied to whole fruit and to sections of the pericarp tissue and by stress-relaxation analysis. Determinations were also made of cell density and cell wall content within the pericarp tissue. Fruit of mutant lines had firmer tissue than either `Rutgers' or `Flora-Dade' at MG or ripe. Whole fruit compression measurements showed that T4099 dg was firmer than T4065 hp or `Rutgers' at MG and firmer than `Flora-Dade' and `Rutgers' when ripe. Whole fruit of `Flora-Dade' were significantly firmer than `Rutgers' at MG and ripe. Firmness measured by compressive strength also showed that mutant lines had firmer pericarp tissue than the wild types at both MG and ripe stages. Stress-relaxation analysis showed that MG fruit of T4099 dg had greater tissue elasticity than `Rutgers' or `Flora-Dade'. Ripe fruit of both mutant lines had more tissue elasticity than wild types. There were no apparent differences among the genotypes due to tissue relaxation. From these analyses, tissue elasticity appears to be a significant parameter in determining tissue firmness in the tomato genotypes used in this study. Firmness and textural quality of ripe tomatoes appeared to be dependent on elasticity of the pericarp tissue and on the level of enzymatic softening during ripening.


1965 ◽  
Vol 11 (4) ◽  
pp. 703-707 ◽  
Author(s):  
W. A. Smirnoff

Hyalophora cecropia (Linnaeus) is susceptible to infection by a cytoplasmic polyhedrosis virus. Electron microscope studies showed spherical viral particles known as "cores" which remain in groups of 12 to 17 subunits. The virus particles were embedded in a protein mass located in craters of the polyhedra. Larvae of the first, second, and third instars were more susceptible to viral infection than later instars. However, up to 50% of the larvae of later instars sometimes survived. The larvae of subsequent instars and the pupa were very resistant and periodic injections of strong dosages of virus material produced no ill effect. In general, larvae infected by this cytoplasmic virus shrank to less than half normal size before death.


1956 ◽  
Vol 104 (2) ◽  
pp. 171-182 ◽  
Author(s):  
Councilman Morgan ◽  
Harry M. Rose ◽  
Dan H. Moore

Rods and spheres believed to represent viral particles were observed at the free surface of entodermal cells of the chorioallantoic membrane 6 to 44 hours after infection. Although occasional short rods revealed poorly defined internal bodies, the majority, as well as all the longer rods (filaments), exhibited no visible internal structure. The spheres presumed to lie central to the plane of section contained an inner body 20 to 22 mµ in diameter. Both forms possessed a dense, sharply defined limiting membrane 30 A thick and a diffuse external coat of lesser density. Where superimposition within the section was minimal, the viral particles were separated by a relatively constant distance. Measured to include this spacing, on the assumption that it reflected the presence of a component of the outer coat, the diameters of a majority of the rods were 50 to 60 mµ, whereas the spheres averaged 60 to 70 mµ. The rods appeared to form by a process of extrusion from the cell wall and became detached either singly or in bundles of variable length. The spheres seemed to differentiate at the cell surface and to acquire the inner body, limiting membrane, and outer coat as they migrated through the membrane of the host cell. No characteristic changes were seen in the nuclei or adjacent cytoplasm, and recognizable viral particles were never encountered in these areas of the cell. No support was obtained for the assumption that the spheres developed primarily by segmentation of the rods. It is suggested that the spherical form of the virus is the elemental infectious unit and that the filamentous form is largely or completely non-infective.


Plant Disease ◽  
2021 ◽  
Author(s):  
Hae-Ryun Kwak ◽  
Hui-Seong Byun ◽  
Hong-Soo Choi ◽  
Jong-Woo Han ◽  
Chang-Seok Kim ◽  
...  

In October 2018, cucumber plants showing yellowing and chlorotic mottle symptoms were observed in a greenhouse in Chungbuk, South Korea. The observed symptoms were similar to those caused by cucurbit aphid-borne yellows virus (CABYV), which has been detected on cucumber plants in the region since it was reported on melon in Korea in 2015 (Lee et al 2015). To identify the potential agents causing these symptoms, 28 samples from symptomatic leaves and fruit of cucumber plants were subjected to total RNA extraction using the Plant RNA Prep Kit (Biocubesystem, Korea). Reverse transcription polymerase chain (RT-PCR) was performed on total RNA using CABYV specific primers and protocols (Kwak et al. 2018). CABYV was detected in 17 of the 28 samples, while 11 symptomatic samples tested negative. In order to identify the cause of the symptoms, RT-PCR was performed using cucurbit chlorotic yellows virus (CCYV) and cucurbit yellow stunting disorder virus (CYSDV) specific primers (Wintermantel et al. 2019). Eight of the 28 samples were positive using the CCYV specific primers while seven samples were infected with only CCYV and one contained a mixed infection of CABYV with CCYV. None of the samples tested positive for CYSDV. The expected 373 nt amplicons of CCYV were bi-directionally sequenced, and BLASTn analysis showed that the nucleotide sequences shared 98 to 100% identity with CCYV isolates from East Asia, including NC0180174 from Japan. Two pairs of primers for amplification of the complete coat protein and RNA-dependent RNA polymerase (RdRp) genes (Wintermantel et al., 2019) were used to amplify the 753bp coat protein and 1517bp RdRp genes, respectively. Amplicons of the expected sizes were obtained from a CCYV single infection and ligated into the pGEM T- Easy vector (Promega, WI, USA). Three clones from each amplicon were sequenced and aligned using Geneious Prime and found to have identical sequences (Genbank accession nos. MW033300, MW033301). The CP and RdRp sequences demonstrated 99% nucleotide and 100% amino acid identity with the respective genes and proteins of the CCYV isolates from Japan. This study documents the first report of CCYV in Korea. Since CCYV was first detected on melon in Japan, it has been reported in many other countries including those in East Asia, the Middle East, Southern Europe, North Africa, and recently in North America. CCYV has the potential to become a serious threat to production of cucurbit crops in Korea, particularly due to the increasing prevalence of the whitefly, Bemisia tabaci, in greenhouse production systems. It will be important to continue monitoring for CCYV and determine potential alternate hosts in the region to manage and prevent further spread of CCYV in Korea.


2019 ◽  
Vol 41 (4) ◽  
pp. 452-460
Author(s):  
Rubiene Neto Soares ◽  
Ronaldo Oliveira dos Santos ◽  
Breno Marques da Silva e Silva

Abstract: The aim of this study was to describe the morphology of fruit, seeds and seedlings, as well as the anatomy of the seed and the seedling of Pentaclethra macroloba (Willd.) Kuntze. Morpho-biometry was performed on fifty fruit samples and one hundred seeds. To describe the sequences of the morphological events of the germination stages, ten seeds were placed to germinate. Anatomical analysis was performed in a scanning electron microscope with seed samples and seedling leaves. The species has leguminous type fruit of 16.1 to 45.2 cm length and 4.1 to 7.3 cm width; seeds have a pleurogram and are eurispermic, ovoid, deltoid to elliptical and measure from 3.8 to 6.1 cm length and 2.5 to 5.7 cm width. Anatomically, the cotyledons are composed of thin-walled parenchyma cells with various oil cells. The seedlings have bipinnate leaves, with waxes and simple trichomes at the margins of the adaxial surface and paracytic stomata on the abaxial surface. The epicotyl is slightly twisted, with caducous cataphylls and a first pair of alternate eophylls. Germination is of the phanero-hypogean-reserve type. Taxonomic recognition of this species is possible in the field through the external morphological traits and can help in identification of saplings.


Plant Disease ◽  
2010 ◽  
Vol 94 (9) ◽  
pp. 1168-1168 ◽  
Author(s):  
L.-H. Huang ◽  
H.-H. Tseng ◽  
J.-T. Li ◽  
T.-C. Chen

In April 2009, chlorosis, yellows, and bleaching accompanied with green veins and brittleness on the lower leaves of cantaloupe (Cucumis melo L.) were observed in Lunbei Township, Yunlin County, Taiwan. The same symptoms were also found on cucumber (Cucumis sativus L.), pumpkin (Cucurbita moschata Duchesne), watermelon (Citrullus lanatus (Thunb.) Matsum. & Nakai), bottle gourd (Lagenaria siceraria (Molina) Standl.), and oriental pickling melon planted in other areas of Yunlin and Changhua counties in central Taiwan. Large populations of whiteflies were observed in association with the diseased cucurbit crops, and they were further identified as silverleaf whitefly (Bemisia argentifolii Bellows & Perring) by PCR with specific primers BaBF (5′-CCACTATAATTATTGCTGTTCCCACA-3′) and l2-N-3014R (5′-TCCAATGCACTAATCTGCCATATTA-3′) (3). In June 2009, samples from symptomatic cantaloupe were collected for virus diagnosis. Flexuous filamentous virions of 700 to 900 nm were observed in crude sap of the symptomatic cantaloupe tissues with transmission electron microscopy. On the basis of the suspected insect vector, symptomology, and virus morphology, a Crinivirus species was suspected as the causal agent. A nested reverse transcription (RT)-PCR assay with degenerate deoxyinosine-containing primers developed for detection of Closterovirus and Crinivirus (1) was conducted. Total RNAs extracted from 16 symptomatic cantaloupe samples with a Plant Total RNA Miniprep Purification Kit (Hopegen, Taichung, Taiwan) were analyzed, and a 0.5-kb DNA fragment was amplified from eight of them. The PCR products were sequenced and the sequences were identical among samples. A comparison of the submitted sequence (Accession No. HM120250) with those in GenBank showed that the sequence was identical to the Hsp70h sequences of Cucurbit chlorotic yellows virus (CCYV) isolates from Japan (Accession No. AB523789) (4) and China (Accession Nos. GU721105, GU721108, and GU721110). To identify CCYV infection in the field, the specific primers, Crini-hsp70-f (5′-GCCATAACCATTACGGGAGA-3′) and Crini-hsp70-r (5′-CGCAGTGAAAAACCCAAACT-3′), that amplify a 389-bp DNA fragment corresponding to the nucleotide 1,324 to 1,712 of RNA2 of the original CCYV Japan isolate (Accession No. AB523789) were designed for detection of CCYV. In RT-PCR analyses, CCYV was identified in cantaloupe (305 of 599 samples), watermelon (27 of 93 samples), cucumber (all 15 samples), melon (82 of 92 samples), pumpkin (8 of 10 samples), and bottle gourd (10 of 17 samples) showing chlorosis and yellowing. The 389-bp DNA fragment was also amplified by RT-PCR with the primer pair Crini-hsp70-f/Crini-hsp70-r from total RNA extracts of 29 of 116 silverleaf whitefly individuals collected from the diseased cantaloupe fields in Lunbei Township from August to October, 2009. CCYV is a newly characterized Crinivirus species, first discovered in Japan in 2004 (2) and also found in China in 2009. To our knowledge, this is the first report that CCYV is emerging as a threat to cucurbit productions in Taiwan. References: (1) C. I. Dovas and N. I. Katis. J. Virol. Methods 109:217, 2003. (2) Y. Gyoutoku et al. Jpn. J. Phytopathol. 75:109, 2009. (3) C. C. Ko et al. J. Appl. Entomol. 131:542, 2007. (4) M. Okuda et al. Phytopathology 100:560, 2010.


Plant Disease ◽  
2020 ◽  
Vol 104 (5) ◽  
pp. 1335-1350 ◽  
Author(s):  
Marwa Moumni ◽  
Mohamed Bechir Allagui ◽  
Valeria Mancini ◽  
Sergio Murolo ◽  
Neji Tarchoun ◽  
...  

Squash is one of the most important crops of tropical and temperate regions, and it can be affected by several fungal pathogens. Most of these pathogens infect the seeds, which become an efficient vehicle to disperse seedborne pathogens over long distances, with consequent severe crop losses. The main objective of this study was the identification of the principal seedborne fungi in seeds extracted from 66 samples of asymptomatic and symptomatic squash fruit (Cucurbita maxima, Cucurbita moschata) collected in two countries, Tunisia and Italy. The symptoms of fruit decay were identified and classified according to lesion size. Following the blotter test, 14 fungal species were detected from the seeds. Seedborne fungi were identified in all fruit samples tested, including asymptomatic fruit. The most frequent fungi from Tunisian seeds were Alternaria alternata (25.1%), followed by Stagonosporopsis cucurbitacearum (24.6%), Fusarium solani (16.6%), Rhizopus stolonifer (13.3%), F. fujikuroi (7.8%), Albifimbria verrucaria (3.3%), and Stemphylium vesicarium (2.3%). For the fruits from Italy, the most frequently identified fungal species in seed samples were Alternaria alternata (40.0%), followed by F. fujikuroi (20.8%), Stemphylium vesicarium (3.0%), and Curvularia spicifera (2.1%). Morphological identification was confirmed by molecular diagnosis using the available species-specific primers. Furthermore, specific primers were designed to identify Albifimbria verrucaria, Paramyrothecium roridum, and Stemphylium vesicarium. Application of seed-health testing methods, including such conventional and molecular diagnostic tools, will help to improve seed quality and crop yields.


2010 ◽  
Vol 42 (No. 1) ◽  
pp. 34-37 ◽  
Author(s):  
J. Svoboda ◽  
G. Červená ◽  
J. Rodová ◽  
M. Jokeš

Symptoms of viral infection were observed on plants of pepper, cv. OL 228, raised from commercial seeds of Czech origin in a greenhouse in the year 2002. Infected plants showed mosaic or mottling on leaves, and necrotic depressions on fruits. Straight, rod-shaped viral particles of about 300 nm, indicating a tobamovirus infection, were found by electron microscope. ELISA produced negative reactions for <i>Tobacco mosaic virus</i> (TMV) but positive reactions with an antiserum to <i>Pepper mild mottle virus</i> (PMMoV). In biological characterisation using pepper cultivars with the L1, L2, L3 and L4 tobamovirus resistance genes it was found that the Czech isolate of PMMoV belongs to pathotype P1.2. This is the first report of PMMoV in the Czech Republic. Its distribution, however, may still be limited as a survey did not reveal other infections in the main pepper producing areas. As PMMoV spreads with infected seeds, the possibility of its chemical deactivation by NaOH was tested and confirmed.


Sign in / Sign up

Export Citation Format

Share Document