infectious unit
Recently Published Documents


TOTAL DOCUMENTS

30
(FIVE YEARS 5)

H-INDEX

12
(FIVE YEARS 1)

Author(s):  
Adeline Kerviel ◽  
Mengyang Zhang ◽  
Nihal Altan-Bonnet

Viral egress and transmission have long been described to take place through single free virus particles. However, viruses can also shed into the environment and transmit as populations clustered inside extracellular vesicles (EVs), a process we had first called vesicle-mediated en bloc transmission. These membrane-cloaked virus clusters can originate from a variety of cellular organelles including autophagosomes, plasma membrane, and multivesicular bodies. Their viral cargo can be multiples of nonenveloped or enveloped virus particles or even naked infectious genomes, but egress is always nonlytic, with the cell remaining intact. Here we put forth the thesis that EV-cloaked viral clusters are a distinct form of infectious unit as compared to free single viruses (nonenveloped or enveloped) or even free virus aggregates. We discuss how efficient and prevalent these infectious EVs are in the context of virus-associated diseases and highlight the importance of their proper detection and disinfection for public health. Expected final online publication date for the Annual Review of Cell and Developmental Biology, Volume 37 is October 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


mBio ◽  
2020 ◽  
Vol 11 (5) ◽  
Author(s):  
Hui Wu ◽  
Barbara Kropff ◽  
Michael Mach ◽  
William J. Britt

ABSTRACT The human cytomegalovirus (HCMV) UL132 open reading frame encodes a 270-amino-acid type I envelope glycoprotein, gpUL132. The deletion of UL132 (ΔUL132) from the HCMV genome results in a pronounced deficit in virus yield, with an approximately 2-log decrease in the production of infectious virus compared to the wild-type (WT) virus. Characterization of the ΔUL132 mutant virus indicated that it was less infectious with a high particle-to-infectious unit ratio and an altered composition of virion proteins compared to the WT virus. In addition, the viral assembly compartment (AC) failed to form in cells infected with the ΔUL132 mutant virus. The expression of gpUL132 in trans rescued the defects in the morphogenesis of the AC in cells infected with the ΔUL132 mutant virus and in infectious virus production. Furthermore, using cell lines expressing chimeric proteins, we demonstrated that the cytosolic domain of gpUL132 was sufficient to rescue AC formation and WT levels of virus production. Progeny virions from ΔUL132-infected cells expressing the cytosolic domain of gpUL132 exhibited particle-to-infectious unit ratios similar to those of the WT virus. Together, our findings argue that gpUL132 is essential for HCMV AC formation and the efficient production of infectious particles, thus highlighting the importance of this envelope protein for the virus-induced reorganization of intracellular membranes and AC formation in the assembly of infectious virus. IMPORTANCE Following infection of permissive cells, human cytomegalovirus (HCMV) induces the reorganization of intracellular membranes resulting in the formation of a distinctive membranous compartment in the cytoplasm of infected cells. This compartment has been designated the viral assembly compartment (AC) and is thought to be a site for cytoplasmic virion assembly and envelopment. In this study, we have demonstrated that a single virion envelope glycoprotein is essential for AC formation in infected cells, and in its absence, there is a significant decrease in the production of infectious virions. These findings are consistent with those from other studies that have demonstrated the importance of host cell proteins in the formation of the AC and demonstrate a critical role of a single virion protein in AC formation and the efficient assembly of infectious virus.


2020 ◽  
Vol 94 (14) ◽  
Author(s):  
Rinki Kumar ◽  
Linda Cruz ◽  
Praneet K. Sandhu ◽  
Nicholas J. Buchkovich

ABSTRACT Little is known about the human cytomegalovirus (HCMV) tegument protein UL88. Large-scale genomic studies have reported disparate results for UL88-null viruses, reporting both no phenotype and a >1-log decrease in virus titers. UL88 has also been reported to interact with UL69 and UL48, but the functional relevance of this interaction is unknown. Here, we report that UL88, which is conserved among different viral strains, is dispensable for production of infectious HCMV virions in multiple HCMV strains and cell types. However, the specific infectivity of HCMV virions suffers in the absence of UL88, as more genomes are required per PFU. This may be a result of altered virion tegument protein composition, as Western blot analysis shows a significant reduction in the tegument levels of pp71, UL47, and UL48 in viruses lacking UL88. While an interaction between UL88 and UL48 has previously been reported, we show that UL88 can interact with UL47; however, UL88 does not appear to be part of a stable complex consisting of UL47 and UL48. These findings identify an important role for UL88 in incorporating the viral proteins UL47 and UL48 into the virion tegument layer. IMPORTANCE A better understanding of the role and functions of tegument proteins in HCMV, many of which remain uncharacterized, will contribute to our understanding of the biology of HCMV. The virus has a large genome, greater than 230 kb, and functional annotation of these genes is important for identifying novel targets for improving therapeutic intervention. This study identifies a role for a viral tegument protein with unknown function, UL88, in maintaining the proper tegument composition of HCMV virions. Virions produced in the absence of UL88 exhibit decreased fitness and require more genomes per infectious unit.


Viruses ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 282 ◽  
Author(s):  
Valesca Anschau ◽  
Rafael Sanjuán

The spread of viruses among cells and hosts often involves multi-virion structures. For instance, virions can form aggregates that allow for the co-delivery of multiple genome copies to the same cell from a single infectious unit. Previously, we showed that vesicular stomatitis virus (VSV), an enveloped, negative-strand RNA virus, undergoes strong aggregation in the presence of saliva from certain individuals. However, the molecular components responsible for such aggregation remain unknown. Here we show that saliva-driven aggregation is protein dependent, and we use comparative proteomics to analyze the protein content of strongly versus poorly aggregating saliva. Quantitative analysis of over 300 proteins led to the identification of 18 upregulated proteins in strongly aggregating saliva. One of these proteins, the fibrinogen gamma chain, was verified experimentally as a factor promoting VSV aggregation in a dose-dependent manner. This study hence identifies a protein responsible for saliva-driven VSV aggregation. Yet, the possible involvement of additional proteins or factors cannot be discarded.


2019 ◽  
Author(s):  
Asher Leeks ◽  
Rafael Sanjuán ◽  
Stuart A. West

Viruses frequently spread among cells or hosts in groups, with multiple viral genomes inside the same infectious unit. These collective infectious units can consist of multiple viral genomes inside the same virion, or multiple virions inside a larger structure such as a vesicle. Collective infectious units deliver multiple viral genomes to the same cell simultaneously, which can have important implications for viral pathogenesis, antiviral resistance, and social evolution. However, little is known about why some viruses transmit in collective infectious units, whereas others do not. We used a simple evolutionary approach to model the potential costs and benefits of transmitting in a collective infectious unit. We found that collective infectious units could be favoured if cells infected by multiple viral genomes were significantly more productive than cells infected by just one viral genome, and especially if there were also efficiency benefits to packaging multiple viral genomes inside the same infectious unit. We also found that if some viral sequences are defective, then collective infectious units could evolve to become very large, but that if these defective sequences interfered with wild-type virus replication, then collective infectious units were disfavoured.


2018 ◽  
Vol 35 (3) ◽  
pp. 39-44
Author(s):  
A. V. Permyakova ◽  
I. I. Lvova ◽  
N. S. Pospelova ◽  
A. I. Galimova

Aim. To estimate the statistical indices of informative value of clinical McIsaac scale at the example of scarlatina in children. Materials and methods. Retrospective cliniсostatistical analysis was carried out on the basis of 30 medical cards of children, hospitalized to children’s unit of Perm Regional Clinical Infectious Hospital in 2017 with diagnosis of scarlatina. The control group consisted of 25 children with moderately severe tonsillopharyngitis. Results. Clinical peculiar features of scarlatina were studied in 30 children, hospitalized to children’s infectious unit in 2017. Nowadays, scarlatina was revealed to have a typical course with characteristic clinical symptoms, including punctate rash, intoxication with increased temperature up to 38–39, acute tonsillitis, absence of cough in the acute period, moderate regional lymphadenitis. At the hospital stage, there predominate moderately severe forms of this disease. Bacteriological verification of Streptococcus pyogenes (at admittance to the hospital) in the investigated group was 74 %. Typical punctate rash remains the basic clinical symptom of scarlatina. Informative value of McIsaac scale for diagnosis of BHSA-tonsillitis with scarlatina infection was assessed. Specificity of assessment was 92 %. Conclusions. Clinicodiagnostic McIsaac scale is highly informative for diagnosis of BHSA-tonsillitis among children.


Viruses ◽  
2018 ◽  
Vol 10 (12) ◽  
pp. 679 ◽  
Author(s):  
Xiujuan Zhao ◽  
Lin Wang ◽  
Qinghua Cui ◽  
Ping Li ◽  
Yanyan Wang ◽  
...  

Influenza A viruses (IAV) carrying reporter genes provide a powerful tool to study viral infection and pathogenesis in vivo, however, incorporating a non-essential gene into the IAV genome often results in virus attenuation and genetic instability. Very few studies have systematically compared different reporter IAVs, and most optimization attempts seem to lack authentic directions. In this study, we evaluated the ratio of genome copies to the number of infectious unit of two reporter IAVs, PR8-NS1-Gluc and PR8-PB2-Gluc. As a result, PR8-NS1-Gluc and PR8-PB2-Gluc produced 41.4 and 3.8 genomes containing noninfectious particles respectively for every such particle produced by parental PR8 virus. RdRp assay demonstrated that modification of segment NS by inserting reporter genes can interfere with the replication competitive property of the corresponding vRNAs, and the balance of the 8 segments of the reporter IAVs were drastically impaired in infected cells. As a consequence, large amounts of NS-null noninfectious particles were produced during the PR8-NS1-Gluc packaging. In summary, we unravel a mechanism underlying attenuation of reporter IAVs, which suggests a new approach to restore infectivity and virulence by introducing extra mutations compensating for the impaired replication property of corresponding segments.


2017 ◽  
Author(s):  
Elizabeth R. Aguilera ◽  
Andrea K. Erickson ◽  
Palmy R. Jesudhasan ◽  
Christopher M. Robinson ◽  
Julie K. Pfeiffer

ABSTRACTThe plaque assay is a common technique used to measure virus concentrations and is based upon the principle that each plaque represents a single infectious unit. As such, plaque number is expected to correlate linearly with the virus dilution plated and each plaque should be formed by a single founder virus. Here, we examined whether more than one virus can contribute to plaque formation. By using genetic and phenotypic assays with genetically marked polioviruses, we found that multiple parental viruses are present in 5-7% of plaques, even at an extremely low multiplicity of infection. We demonstrated through visual and biophysical assays that, like many viral stocks, our viral stocks contain both single particles and aggregates. These data suggest that aggregated virions are capable of inducing co-infection and chimeric plaque formation. In fact, inducing virion aggregation via exposure to low pH increased co-infection in a flow cytometry-based assay. We hypothesized that plaques generated by viruses with high mutation loads may have higher co-infection frequencies due to fitness restoring processes such as complementation and recombination. Indeed, we found that co-infection frequency correlated with mutation load, with 17% chimeric plaque formation for heavily mutagenized viruses. Importantly, the frequency of chimeric plaques may be underestimated by up to three-fold, since co-infection with the same parental virus cannot be scored in our assay. This work indicates that more than one virus can contribute to plaque formation and that co-infection may assist plaque formation in situations where the amount of genome damage is high.


Sign in / Sign up

Export Citation Format

Share Document