scholarly journals Talaromyces minioluteus: New Postharvest Fungal Pathogen in Serbia

Plant Disease ◽  
2020 ◽  
Vol 104 (3) ◽  
pp. 656-667 ◽  
Author(s):  
Stefan Stošić ◽  
Danijela Ristić ◽  
Katarina Gašić ◽  
Mira Starović ◽  
Milica Ljaljević Grbić ◽  
...  

Talaromyces minioluteus is one of the important species of genus Talaromyces, which has cosmopolitan distribution and is encountered on a wide range of different habitats. This species has not been considered as an important plant pathogen, even though it has been isolated from various plant hosts. Fruits and vegetables with Penicillium-like mold symptoms were collected from 2015 to 2017 from markets in Serbia. Isolates originating from quince, tomato, and orange fruits, onion bulbs, and potato tubers were identified and characterized on a morphological, physiological, and molecular level. Morphological and physiological examination included observing micromorphology, testing growth on six different media and at five different temperatures, and production of three enzymes. Molecular identification and characterization were performed using four molecular markers: internal transcribed spacer, β-tubulin, calmodulin, and DNA-dependent RNA polymerase II second largest subunit. The results of morphological and molecular analyses were in agreement, and they proved that the obtained isolates are T. minioluteus. In the pathogenicity assay, T. minioluteus was confirmed as a pathogen of all species tested with the exception of potato tubers. This is the first report of T. minioluteus as a postharvest plant pathogen on quince, tomato, and orange fruit and onion bulbs. Also, this is the first record of T. minioluteus in Serbia.

2021 ◽  
Vol 12 ◽  
Author(s):  
Sihem Hannat ◽  
Pierre Pontarotti ◽  
Philippe Colson ◽  
Marie-Line Kuhn ◽  
Eric Galiana ◽  
...  

Giant viruses of amoebas, recently classified in the class Megaviricetes, are a group of viruses that can infect major eukaryotic lineages. We previously identified a set of giant virus sequences in the genome of Phytophthora parasitica, an oomycete and a devastating major plant pathogen. How viral insertions shape the structure and evolution of the invaded genomes is unclear, but it is known that the unprecedented functional potential of giant viruses is the result of an intense genetic interplay with their hosts. We previously identified a set of giant virus sequences in the genome of P. parasitica, an oomycete and a devastating major plant pathogen. Here, we show that viral pieces are found in a 550-kb locus and are organized in three main clusters. Viral sequences, namely RNA polymerases I and II and a major capsid protein, were identified, along with orphan sequences, as a hallmark of giant viruses insertions. Mining of public databases and phylogenetic reconstructions suggest an ancient association of oomycetes and giant viruses of amoeba, including faustoviruses, African swine fever virus (ASFV) and pandoraviruses, and that a single viral insertion occurred early in the evolutionary history of oomycetes prior to the Phytophthora–Pythium radiation, estimated at ∼80 million years ago. Functional annotation reveals that the viral insertions are located in a gene sparse region of the Phytophthora genome, characterized by a plethora of transposable elements (TEs), effectors and other genes potentially involved in virulence. Transcription of viral genes was investigated through analysis of RNA-Seq data and qPCR experiments. We show that most viral genes are not expressed, and that a variety of mechanisms, including deletions, TEs insertions and RNA interference may contribute to transcriptional repression. However, a gene coding a truncated copy of RNA polymerase II along a set of neighboring sequences have been shown to be expressed in a wide range of physiological conditions, including responses to stress. These results, which describe for the first time the endogenization of a giant virus in an oomycete, contribute to challenge our view of Phytophthora evolution.


Author(s):  
Vladimiro Guarnaccia ◽  
Ilaria Martino ◽  
Giovanna Gilardi ◽  
Angelo Garibaldi ◽  
M. Lodovica Gullino

Abstract Species of Colletotrichum are considered among the most important plant pathogens, saprobes and endophytes on a wide range of ornamentals, fruits and vegetables. Several Colletotrichum species have been reported in nurseries and public or private gardens in northern Italy. In this study, the occurrence, diversity and pathogenicity of Colletotrichum spp. associated with several ornamental hosts was explored. Survey were carried out during the 2013–2019 period in Piedmont, Italy. A total of 22 Colletotrichum isolates were collected from symptomatic leaves and stems of two Campanula spp., Ceanothus thyrsiflorus, Coreopsis lanceolata, Cyclamen persicum, Hydrangea paniculata, Liquidambar styraciflua, Mahonia aquifolium and Rhyncospermum jasminoides. A multi-locus phylogeny was established based on the basis of three genomic loci (gapdh, act and tub2). The pathogenicity of selected, representative isolates was tested. Colletotrichum isolates were identified as members of four important species complexes: Acutatum, Gloeosporioides, Dematium and Destructivum. Colletotrichum fioriniae, C. nymphaeae and C. fuscum were found in association with leaf lesions of Mahonia aquifolium, Campanula rapunculoides and Coreopsis lanceolata, respectively. Colletotrichum lineola, C. grossum and C. cigarro were isolated from Campanula trachelium, Rhyncospermum jasminoides and Liquidambar styraciflua, respectively. Colletotrichum fructicola was found to be responsible of anthracnose of Ceanothus thyrsiflorus, Hydrangea paniculata, Cyclamen persicum and Liquidambar styraciflua. All the tested isolates were pathogenic and reproduced identical symptoms to those observed in private gardens and nurseries. The present study improves our understanding of Colletotrichum spp. associated with different ornamental hosts and provides useful information for an effective disease management programme.


2021 ◽  
Vol 653 (1) ◽  
pp. 012142
Author(s):  
W Mikasari ◽  
I Calista ◽  
D Mussadad ◽  
E Fauzi ◽  
N Megawati ◽  
...  

2021 ◽  
Author(s):  
Giuliano Cerasa ◽  
Gabriella Lo Verde

AbstractOzognathus cornutus (LeConte, 1859) (Coleoptera: Ptinidae: Ernobiinae), species native to North America, is a saproxylophagous species and is known to feed on decaying tissues within conspicuous galls and on vegetal decaying organic material such as dried fruits or small wood shavings and insect excrements in galleries made by other woodboring species. A few years after the first record in 2011, its naturalization in Italy is here reported. The insect was found as successor in galls of Psectrosema tamaricis (Diptera Cecidomyiidae), Plagiotrochus gallaeramulorum, Andricus multiplicatus and Synophrus politus (Hymenoptera Cynipidae). The galls seem to have played an important ecological role in speeding up the naturalization process. The lowest proportion of galls used by O. cornutus was recorded for P. tamaricis (23%), the only host belonging to Cecidomyiidae, while the percentages recorded for the other host species, all Cynipidae forming galls on oaks, were higher: 43.6%, 61.1% and 76.9% in A multiplicatus, S. politus and P. gallaeramulorum, respectively. Although O. cornutus is able to exploit other substrates like dried fruits and vegetables, for which it could represent a potential pest, it prefers to live as a successor in woody and conspicuous galls, which thus can represent a sort of natural barrier limiting the possible damages to other substrates.


2013 ◽  
Vol 103 (5) ◽  
pp. 479-487 ◽  
Author(s):  
Efrén Remesal ◽  
Blanca B. Landa ◽  
María del Mar Jiménez-Gasco ◽  
Juan A. Navas-Cortés

Populations of Sclerotium rolfsii, the causal organism of Sclerotium root-rot on a wide range of hosts, can be placed into mycelial compatibility groups (MCGs). In this study, we evaluated three different molecular approaches to unequivocally identify each of 12 previously identified MCGs. These included restriction fragment length polymorphism (RFLP) patterns of the internal transcribed spacer (ITS) region of nuclear ribosomal DNA (rDNA) and sequence analysis of two protein-coding genes: translation elongation factor 1α (EF1α) and RNA polymerase II subunit two (RPB2). A collection of 238 single-sclerotial isolates representing 12 MCGs of S. rolfsii were obtained from diseased sugar beet plants from Chile, Italy, Portugal, and Spain. ITS-RFLP analysis using four restriction enzymes (AluI, HpaII, RsaI, and MboI) displayed a low degree of variability among MCGs. Only three different restriction profiles were identified among S. rolfsii isolates, with no correlation to MCG or to geographic origin. Based on nucleotide polymorphisms, the RPB2 gene was more variable among MCGs compared with the EF1α gene. Thus, 10 of 12 MCGs could be characterized utilizing the RPB2 region only, while the EF1α region resolved 7 MCGs. However, the analysis of combined partial sequences of EF1α and RPB2 genes allowed discrimination among each of the 12 MCGs. All isolates belonging to the same MCG showed identical nucleotide sequences that differed by at least in one nucleotide from a different MCG. The consistency of our results to identify the MCG of a given S. rolfsii isolate using the combined sequences of EF1α and RPB2 genes was confirmed using blind trials. Our study demonstrates that sequence variation in the protein-coding genes EF1α and RPB2 may be exploited as a diagnostic tool for MCG typing in S. rolfsii as well as to identify previously undescribed MCGs.


Author(s):  

Abstract A new distribution map is provided for Bactrocera papayae Drew & Hancock Diptera: Tephritidae. Attacks a wide range of fleshy fruits and vegetables. Information is given on the geographical distribution in ASIA, Brunei, Christmas Island, Indonesia, Bali, Flores, Java, Kalimantan, Lombok, Sulawesi, Sumbawa, Timor, Malaysia, Sabah, Peninsular Malaysia, Singapore, Thailand, AUSTRALASIA, Australia, Queensland, Indonesia, Irian Jaya, Papua New Guinea.


2021 ◽  
Vol 27 (1) ◽  
pp. 9-17
Author(s):  
V. P. Bui ◽  
◽  
S. S. Gavruishin ◽  
V. B. Phung ◽  
H. M. Dang ◽  
...  

A new technique is described, used by the authors to automate the design process of the main drive of a new generation machine intended for industrial washing of fruits and vegetables. To solve the problem of multi-criteria design, the original approach is proposed that uses interconnected mathematical models describing the dynamic behavior, strength reliability and functional characteristics of the machine in a unified information space. The generalized mathematical model includes 12 controlled parameters, 16 functional constraints, and 3 quality criteria. A genetic algorithm was used to find the space of Pareto-optimal solutions. The situational approach was used to select the final rational solution from a set of solutions belonging to the Pareto-optimal domain. The rational design of option the washer found using the proposed approach is compared with the existing ones. The proposed design methodology can be recommended for the design of a wide range of similar mechanical structures.


Molecules ◽  
2020 ◽  
Vol 25 (17) ◽  
pp. 3816
Author(s):  
Taleb H. Ibrahim ◽  
Muhammad A. Sabri ◽  
Nabil Abdel Jabbar ◽  
Paul Nancarrow ◽  
Farouq S. Mjalli ◽  
...  

The thermal conductivities of selected deep eutectic solvents (DESs) were determined using the modified transient plane source (MTPS) method over the temperature range from 295 K to 363 K at atmospheric pressure. The results were found to range from 0.198 W·m−1·K−1 to 0.250 W·m−1·K−1. Various empirical and thermodynamic correlations present in literature, including the group contribution method and mixing correlations, were used to model the thermal conductivities of these DES at different temperatures. The predictions of these correlations were compared and consolidated with the reported experimental values. In addition, the thermal conductivities of DES mixtures with water over a wide range of compositions at 298 K and atmospheric pressure were measured. The standard uncertainty in thermal conductivity was estimated to be less than ± 0.001 W·m−1·K−1 and ± 0.05 K in temperature. The results indicated that DES have significant potential for use as heat transfer fluids.


1990 ◽  
Vol 10 (11) ◽  
pp. 5782-5795 ◽  
Author(s):  
D K Wiest ◽  
D K Hawley

Transcription from the adenovirus major late (ML) promoter has previously been shown to pause or terminate prematurely in vivo and in vitro at a site within the first intron of the major late transcription unit. We are studying the mechanism of elongation arrest at this site in vitro to define the DNA sequences and proteins that determine the elongation behavior of RNA polymerase II. Our assay system consists of a nuclear extract prepared from cultured human cells. With standard reaction conditions, termination is not observed downstream of the ML promoter. However, in the presence of Sarkosyl, up to 80% of the transcripts terminate 186 nucleotides downstream of the start site. Using this assay, we showed that the DNA sequences required to promote maximal levels of termination downstream of the ML promoter reside within a 65-base-pair region and function in an orientation-dependent manner. To test whether elongation complexes from the ML promoter were functionally homogeneous, we determined the termination efficiency at each of two termination sites placed in tandem. We found that the behavior of the elongation complexes was different at these sites, with termination being greater at the downstream site over a wide range of Sarkosyl concentrations. This result ruled out a model in which the polymerases that read through the first site were stably modified to antiterminate. We also demonstrated that the ability of the elongation complexes to respond to the ML termination site was promoter specific, as the site did not function efficiently downstream of a heterologous promoter. Taken together, the results presented here are not consistent with the simplest class of models that have been proposed previously for the mechanism of Sarkosyl-induced termination.


2013 ◽  
Vol 7 (4) ◽  
pp. 175-180 ◽  
Author(s):  
Liga Dabare ◽  
Ruta Svinka

Porous ceramic pellets for possible environmental application were produced from different Latvian clays by sintering at different temperatures. Their characteristics and influence of additives were analysed using X-ray diffraction, mercury porosimetry and BET tests. The obtained ceramic pellets from calcareous clays after immersion in distilled water change its pH value, which affects their capability to adsorb ions or molecules on the surface. The sorption capabilities are dependent on the pH level of water solution, composition of clays, and used adsorbate. Porosity of the produced pellets is mostly within range from 15 to 25 % throughout all sintering temperatures with a slight decrease at 1050 ?C. The specific surface area has a wide range up to 30 m2/g. The highest surface area has pellets sintered at lower temperatures. The adsorption capability of pellets was evaluated using water solutions with different ions. The most promising results were obtained with iodine sorption. For most pellets the sorption capacity was 12.7 mg/g, although for the pellets sintered at 1050 ?C it was lower.


Sign in / Sign up

Export Citation Format

Share Document