scholarly journals First report of Fusarium proliferatum causing Sheath Rot Disease of Rice in Eastern India

Plant Disease ◽  
2020 ◽  
Author(s):  
S. R Prabhukarthikeyan ◽  
U Keerthana ◽  
Nagendran Krishnan ◽  
Yadav M.K. ◽  
Parameswaran C ◽  
...  

Sheath rot is one of the most devastating diseases of rice because of its ability to reduce the yield significantly in all rice cultivating areas of the world (Bigirimana et al., 2015). Sheath rot disease is associated with various pathogens such as Sarocladium oryza, Fusarium fujikuroi complex and Pseudomonas fuscovaginae (Bigirimana et al., 2015). Hence, this disease has become more complex in nature and added more seriousness. From September to December 2018, plants were observed with typical sheath rot symptoms in research farm of ICAR-National Rice Research Institute and ten farmer’s fields of Cuttack district, Odisha, Eastern India. About 25 to 37% of sheath rot disease severity was recorded in the infected field. Diseased plants were observed with symptoms such as brownish or reddish brown irregular lesions, which were later, got enlarged with grayish centers. Further, rotting of the topmost leaf sheaths that surround the young panicle was observed. At the severe stages, the young panicle was partially emerged from sheath or completely rotted within the sheath. The white to pinkish powdery growth observed inside the infected sheath leading to chaffy and discolored grains. The sheath rot symptomatic plants were collected from the infected fields. To isolate the causal pathogen, infected sheath tissues were surface sterilized in 1% sodium hypochlorite for 2 min, rinsed three times in sterile distilled water, and placed on potato dextrose agar medium (PDA) (HiMedia). Plates were incubated at 27 ± 1° C for 3 d. Further, fungal pathogen colonies were sub-cultured and purified to perform the pathogenicity test. On PDA, the colonies produced abundant white aerial mycelium with violet to pink pigmentation and hyphae were hyaline with septation. Abundant single celled, oval shaped microcondia (5.5-9 × 1.5-2 μm) were produced, whereas macrocondia were not produced and the fungal pathogen was tentatively identified as Fusarium sp. In order to characterize the pathogen at molecular level, ITS, alpha elongation factor gene (EF1-α), RNA polymerase II largest-subunit gene (RPB2), calmodulin gene (cld) were amplified using the primer pair of ITS1/ITS4, EF1/EF2, 5F/7CR and CLPRO1/CLPRO2 respectively and PCR amplicons were subjected to sequencing (White et al. 1990; O’Donnell et al. 1998; Chang et al. 2015). Furthermore, a species-specific primer Fp3-F/Fp4-R was used to identify the pathogen (Jurado et al., 2006). The resulting sequences were confirmed by BLAST analysis and the FUSARIUM-ID database (http://isolate.fusariumdb.org). BLASTn search showed 100% similarity between the query sequence and ITS, EF1-α, RPB2, Calmodulin gene sequences of F. proliferatum available in the Genbank. The following GenBank accession numbers were obtained; MT394055 for ITS; MT439867 for EF1-α; MT790774 for calmodulin; MT940224 for RPB2 and MT801050 for species-specific to F. proliferatum. To confirm the pathogenicity under glass house conditions, fungus grown on sterilized chaffy grains were placed in between boot leaf sheath and panicle and covered with moist cotton (Saravanakumar et al., 2009). After 15 days post inoculation (dpi), rotting symptoms were observed and these were similar to that of field symptoms. Pathogen was constantly re-isolated from symptomatic tissue, satisfying Koch’s postulates. Disease symptoms were not observed on un-inoculated plants. Morphological characters, pathogenicity test and molecular characterization have identified the pathogen as F. proliferatum. To the best of our knowledge, this is the first confirmed report of F. proliferatum causing sheath rot disease on rice from Eastern India.

2015 ◽  
Vol 14 (4) ◽  
pp. 18140-18152 ◽  
Author(s):  
M. Tajul Islam Chowdhury ◽  
M. Salim Mian ◽  
M.A. Taher Mia ◽  
M.Y. Rafii ◽  
M.A. Latif

PLoS ONE ◽  
2021 ◽  
Vol 16 (3) ◽  
pp. e0237894
Author(s):  
Amy E. Kendig ◽  
Vida J. Svahnström ◽  
Ashish Adhikari ◽  
Philip F. Harmon ◽  
S. Luke Flory

Infectious diseases and invasive species can be strong drivers of biological systems that may interact to shift plant community composition. For example, disease can modify resource competition between invasive and native species. Invasive species tend to interact with a diversity of native species, and it is unclear how native species differ in response to disease-mediated competition with invasive species. Here, we quantified the biomass responses of three native North American grass species (Dichanthelium clandestinum, Elymus virginicus, and Eragrostis spectabilis) to disease-mediated competition with the non-native invasive grass Microstegium vimineum. The foliar fungal pathogen Bipolaris gigantea has recently emerged in Microstegium populations, causing a leaf spot disease that reduces Microstegium biomass and seed production. In a greenhouse experiment, we examined the effects of B. gigantea inoculation on two components of competitive ability for each native species: growth in the absence of competition and biomass responses to increasing densities of Microstegium. Bipolaris gigantea inoculation affected each of the three native species in unique ways, by increasing (Dichanthelium), decreasing (Elymus), or not changing (Eragrostis) their growth in the absence of competition relative to mock inoculation. Bipolaris gigantea inoculation did not, however, affect Microstegium biomass or mediate the effect of Microstegium density on native plant biomass. Thus, B. gigantea had species-specific effects on native plant competition with Microstegium through species-specific biomass responses to B. gigantea inoculation, but not through modified responses to Microstegium density. Our results suggest that disease may uniquely modify competitive interactions between invasive and native plants for different native plant species.


Plant Disease ◽  
2014 ◽  
Vol 98 (9) ◽  
pp. 1281-1281 ◽  
Author(s):  
S. Mahadevakumar ◽  
Vandana Yadav ◽  
G. S. Tejaswini ◽  
S. N. Sandeep ◽  
G. R. Janardhana

Lemon (Citrus lemon (L.) Burm. f.) is an important fruit crop cultivated worldwide, and is grown practically in every state in India (3). During a survey conducted in 2013, a few small trees in a lemon orchard near Mysore city (Karnataka) (12°19.629′ N, 76°31.892′ E) were found affected by dieback disease. Approximately 10 to 20% of trees were affected as young shoots and branches showed progressive death from the apical region downward. Different samples were collected and diagnosed via morphological methods. The fungus was consistently isolated from the infected branches when they were surface sanitized with 1.5% NaOCl and plated on potato dextrose agar (PDA). Plates were incubated at 26 ± 2°C for 7 days at 12/12 h alternating light and dark period. Fungal colonies were whitish with pale brown stripes having an uneven margin and pycnidia were fully embedded in the culture plate. No sexual state was observed. Pycnidia were globose, dark, 158 to 320 μm in diameter, and scattered throughout the mycelial growth. Both alpha and beta conidia were present within pycnidia. Alpha conidia were single celled (5.3 to 8.7 × 2.28 to 3.96 μm) (n = 50), bigittulate, hyaline, with one end blunt and other truncated. Beta conidia (24.8 to 29.49 × 0.9 to 1.4 μm) (n = 50) were single celled, filiform, with one end rounded and the other acute and curved. Based on the morphological and cultural features, the fungal pathogen was identified as Phomopsis citri H.S. Fawc. Pathogenicity test was conducted on nine healthy 2-year-old lemon plants via foliar application of a conidial suspension (3 × 106); plants were covered with polythene bags for 6 days and maintained in the greenhouse. Sterile distilled water inoculated plants (in triplicate) served as controls and were symptomless. Development of dieback symptoms was observed after 25 days post inoculation and the fungal pathogen was re-isolated from the inoculated lemon trees. The internal transcribed spacer region (ITS) of the isolated fungal genomic DNA was amplified using universal-primer pair ITS1/ITS4 and sequenced to confirm the species-level diagnosis (4). The sequence data of the 558-bp amplicon was deposited in GenBank (Accession No. KJ477016.1) and nBLAST search showed 99% homology with Diaporthe citri (teleomorph) strain 199.39 (KC343051.1). P. citri is known for its association with melanose disease of citrus in India, the United States, and abroad. P. citri also causes stem end rot of citrus, which leads to yield loss and reduction in fruit quality (1,2). Dieback disease is of serious concern for lemon growers as it affects the overall productivity level of the tree. To the best of our knowledge, this is the first report of P. citri causing dieback of lemon in India. References: (1) I. H. Fischer et al. Sci. Agric. (Piracicaba). 66:210, 2009. (2) S. N. Mondal et al. Plant Dis. 91:387, 2007. (3) S. P. Raychaudhuri. Proc. Int. Soc. Citriculture 1:461, 1981. (4) T. J. White et al. Page 315 in: PCR Protocols: A Guide to Methods and Applications. Academic Press, San Diego, CA, 1990.


Plant Disease ◽  
2013 ◽  
Vol 97 (1) ◽  
pp. 138-138 ◽  
Author(s):  
Y. Z. Diao ◽  
J. R. Fan ◽  
Z. W. Wang ◽  
X. L. Liu

Anthracnose, caused by Colletotrichum spp., is a severe disease and results in large losses in pepper (Capsicum frutescens) production in China (4). Colletotrichum boninense is one of the Colletotrichum species in pepper in China. In August 2011, anthracnose symptoms (circular, sunken lesions with orange to black spore masses) were observed on pepper fruits in De-Yang, Sichuan Province, China. Three single-spore isolates (SC-6-1, SC-6-2, SC-6-3) were obtained from the infected fruits. A 5-mm diameter plug was transferred to potato dextrose agar (PDA); the isolates formed colonies with white margins and circular, dull orange centers. The conidia were cylindrical, obtuse at both ends, and 10.5 to 12.6 × 4.1 to 5.0 μm. The colonies grew rapidly at 25 to 28°C, and the average colony diameter was 51 to 52 mm after 5 days on PDA at 25°C. Based upon these characters, the causal agent was identified as C. boninense. To confirm the identity of the isolates, the internal transcribed spacer (ITS) regions were amplified with the ITS1/ITS4 universal primers (1). The internal transcribed spacer (ITS) sequences (Accession No. JQ926743) of the causal fungus shared 99 to 100% homology with ITS sequences of C. boninense in GenBank (Accession Nos. FN566865 and EU822801). The identity of the causal agent as C. boninense was also confirmed by species-specific primers (Col1/ITS4) (2). In a pathogenicity test, five detached ripe pepper fruits were inoculated with 1 μl of a conidial suspension (106 conidia/mL) or five fruits with 1 μl of sterile water were kept as control. After 7 days in a moist chamber at 25°C, typical anthracnose symptoms had developed on the five inoculated fruits but not on control fruits. C. boninense was reisolated from the lesions, and which was confirmed by morphology and molecular methods as before. There have reports of C. boninense infecting many species of plants, including pepper (3). To our knowledge, this is the first report of C. boninense causing anthracnose on pepper in China. References: (1) A. K. Lucia et al. Phytopathology 93:581, 2002. (2) S. A. Pileggi et al. Can. J. Microbiol. 55:1081, 2009. (3) H. J. Tozze et al. Plant Dis. 93:106, 2009. (4) M. L. Zhang. J. Anhui Agri. Sci. 2:21, 2000.


2020 ◽  
Vol 2 (1) ◽  
Author(s):  
Denita M. Weeks ◽  
Matthew J. Parris ◽  
Shawn P. Brown

Abstract Background Microorganisms have intimate functional relationships with invertebrate and vertebrate taxa, with the potential to drastically impact health outcomes. Perturbations that affect microbial communities residing on animals can lead to dysbiosis, a change in the functional relationship, often associated with disease. Batrachochytrium dendrobatidis (Bd), a fungal pathogen of amphibians, has been responsible for catastrophic amphibian population declines around the globe. Amphibians harbor a diverse cutaneous microbiome, including some members which are known to be antagonistic to Bd (anti-Bd). Anti-Bd microorganisms facilitate the ability of some frog populations to persist in the presence of Bd, where other populations that lack anti-Bd microorganisms have declined. Research suggests disease-antagonistic properties of the microbiome may be a function of microbial community interactions, rather than individual bacterial species. Conservation efforts have identified amphibian-associated bacteria that exhibit anti-fungal properties for use as ‘probiotics’ on susceptible amphibian populations. Probiotic application, usually with a single bacterial species, may benefit from a greater understanding of amphibian species-specific microbiome responses to disturbances (e.g. dysbiosis vs. recovery). We assessed microbiome responses to two microbial disturbance events over multiple time points. Results Exposing Lithobates sphenocephalus (southern leopard frog) adults to the biopesticidal bacteria Bacillus thuringiensis, followed by exposure to the fungal pathogen Bd, did not have long term impacts on the microbiome. After initial shifts, microbial communities recovered and returned to a state that resembled pre-disturbance. Conclusions Our results indicate microbial communities on L. sphenocephalus are robust and resistant to permanent shifts from some disturbances. This resiliency of microbial communities may explain why L. sphenocephalus is not experiencing the population declines from Bd that impacts many other species. Conservation efforts may benefit from studies outlining amphibian species-specific microbiome responses to disturbances (e.g. dysbiosis vs. recovery). If microbial communities on a threatened amphibian species are unlikely to recover following a disturbance, additional measures may be implemented to ameliorate the impacts of physical and chemical stressors on host-associated microbial communities.


2014 ◽  
Vol 2014 ◽  
pp. 1-16 ◽  
Author(s):  
Iván Martínez-Duncker ◽  
Diana F. Díaz-Jímenez ◽  
Héctor M. Mora-Montes

Protein glycosylation pathways are present in all kingdoms of life and are metabolic pathways found in all the life kingdoms. Despite sharing commonalities in their synthesis, glycans attached to glycoproteins have species-specific structures generated by the presence of different sets of enzymes and acceptor substrates in each organism. In this review, we present a comparative analysis of the main glycosylation pathways shared by humans and the fungal pathogenCandida albicans:N-linked glycosylation,O-linked mannosylation and glycosylphosphatidylinositol-anchorage. The knowledge of similarities and divergences between these metabolic pathways could help find new pharmacological targets forC. albicansinfection.


FEBS Letters ◽  
2021 ◽  
Author(s):  
Rajivgandhi Sundaram ◽  
Kodavati Manohar ◽  
Shraddheya Kumar Patel ◽  
Narottam Acharya ◽  
Dileep Vasudevan

2019 ◽  
Vol 15 (2) ◽  
pp. 53-58
Author(s):  
Antok Wahyu Sektiono ◽  
Syamsuddin Djauhari ◽  
Putri Devinta Pertiwi

Sclerotium rolfsii, a the Causal Agent of Stem Rot Disease on Hippeastrum sp.Symptoms of stem rot that cause Hippeastrum sp. or red lily wither, leaves turn yellow, and eventually die found at Mangliawan Village, District of Pakis, Malang - East Java. The purpose of this study was to identify the pathogens that cause root rot disease on lily plants and find out their host range. Sclerotium from the symptomatic base of the plant was isolated on potato dextrose agar medium. Fungus was identified based on the morphological characteristics of the colonies and mycelium. Host range test of pathogen was carried out by manual inoculation on Rain lily (Zephyranthes) St. Bernard's lily (Chlorophytum) and Beach Spider lily (Hymenocallis). The results of the identification showed that the fungus had white mycelium and formed sclerotium. Sclerotium is irregularly rounded, white when young, and dark brown when ripe, and forms 10 days after incubation. In hyphae, there are branching, septa, and clam connections. Based on the morphological characteristics of the disease the fungus was identified as Sclerotium rolfsii. In the host range test, the fungus was able to infect rain lilies and paris lilies, but not in spider lilies. This is the first report of S. rolfsii infection in lily in Indonesia.


Sign in / Sign up

Export Citation Format

Share Document