scholarly journals First Report of Recombinant Potato virus Y Strains in Potato in Jalisco, Mexico

Plant Disease ◽  
2013 ◽  
Vol 97 (3) ◽  
pp. 430-430 ◽  
Author(s):  
A. Quintero-Ferrer ◽  
A. V. Karasev

Potato virus Y (PVY) is a serious problem for potato production worldwide. The virus reduces both tuber yield and quality, and recent spread of recombinant strains of PVY in potato production areas is largely credited with the spread of potato tuber necrotic ringspot disease (PTNRD) (1). In Mexico, recombinant strains of PVY were reported in at least two states, Chihuahua (4) and the State of Mexico (3); however, no surveys have been conducted in other potato-producing areas, and the spectrum of PVY isolates circulating in the country has remained uncharacterized. In October 2011, a small-scale survey of seed potato was conducted in the state of Jalisco, Mexico, to identify PVY isolates present in fields. Twelve seed potato fields were inspected visually. These represented various generations of seed potato, from nuclear to G2. Leaf samples were collected from plants displaying mosaic, crinkling, and yellowing symptoms, and were tested for PVY. Fifty samples were collected from cultivars Fabula, Mondial, Fianna, Gigant, Caesar, and Adora. Of the 50 leaf samples collected, seven were PVY-positive using the Immuno-strip Kit (Agdia, Elkhart, IN), and six of these were determined to have a N-serotype according to the typing by the Pocket Diagnostics lateral flow kit (Forsite Diagnostics, Ltd., York, UK). PVY-positive samples came from cultivars Fabula (2 with N serotype), Mondial (4 with N serotype), and Fianna (1 with O serotype). Extracts of the seven PVY-positive leaf samples were applied to Whatman FTA cards (Sigma, St. Louis, MO), dried, and transported to the Plant Virology Laboratory at the University of Idaho for further characterization. All samples immobilized on FTA cards were subjected to RNA extraction and standard reverse transcriptase (RT)-PCR typing using a set of PVY-specific primers (2) to determine the strain type. All PVY isolates were recombinant. The six N-serotype samples were found to contain recombinant PVYNTN isolates and produced characteristic bands of 181 and 452 bp in RT-PCR, which indicated the presence of two recombination junctions in the HC-Pro/P3 and VPg regions typical of European PVYNTN isolates. The one O-serotype sample was identified as a recombinant PVYN-Wi/N:O isolate, and produced 181 and 689 bp bands in RT-PCR, which indicated the presence of one recombination junction in the HC-Pro/P3 region. Sequence analysis of RT-PCR products amplified from five samples with N serotype identified them as PVYNTN isolates, and from the one with O serotype identified it as PVYN-Wi/N:O isolate. Sequence comparisons confirmed that N serotype samples contained PVY isolates most closely related to typical PVYNTN sequences (Accession No. EF026075), while the O serotype sample contained the PVY isolate most closely related to PVYN-Wi from Europe (HE608963). The data obtained suggest the presence of two different types of PVY recombinants, PVYNTN and PVYN-Wi, in seed potato in Jalisco. Additional surveillance for these recombinant isolates may be needed, as well as a survey of their effects on tuber quality in production areas. This is the first report of recombinant isolates of PVY often associated with PTNRD circulating in seed potato in Jalisco, Mexico. References: (1) S. M. Gray et al. Plant Dis. 94:1384, 2010. (2) J. H. Lorenzen et al. Plant Dis. 90:935, 2006. (3) V. R. Ramirez-Rodriguez et al. Virol. J. 6:48, 2009. (4) L. Robles-Hernandez et al. Plant Dis. 94:1262, 2010.

Plant Disease ◽  
2021 ◽  
Author(s):  
Pengcheng Ding ◽  
Dexin Chen ◽  
Haixu Feng ◽  
Jiao Li ◽  
Hui Cao ◽  
...  

Potato is an important crop in Shanxi province located in north-central China. During 2019-2020, 319 potato leaf samples were collected from eight locations distributed in three major potato production areas in Shanxi. Bio-chip detection kit revealed the presence of several potato viruses, and among them potato virus Y (PVY) was the most common one, reaching the incidence of 87.8% of all symptomatic samples. The immuno-captured multiplex reverse transcription (RT)-PCR was used to identify strains for all 280 PVY-positive samples, unveiling 242 samples infected with a single strain of PVY (86.4%) and 38 (13.6%) with a mixed infection. Of samples with a single-strain infection, PVY -SYR-II accounted for 102 (42.1%), followed by PVYN-Wi (33, 13.6%) , PVY -SYR-I (28, 11.6%), 261-4 (22, 9.1%), PVYNTNa (20, 8.3%), PVYNTNb (19, 7.9%), and PVY -SYR-III (18, 7.4%). Seven isolates representing different recombinants were selected for whole genome sequencing. Phylogenetic and recombination analyses confirmed the RT-PCR based strain typing for all seven strains of PVY found in Shanxi. SXKL-12 is the first SYR-III strain from potato reported from China. However, unlike that in other known SYR-III isolates, the region positioned from 1,764 to1,902 nt in SXKL-12 shared the highest sequence identity of 82.2% with an uncharacterized PVY isolate, JL-23, from China. Interestingly, the PVYN-Wi isolate SXZY-40 also possessed a more divergent sequence for the region positioned from 6,156 to 6,276 nt than other N-Wi isolates known to date, sharing the highest identity of 86.6% with an uncharacterized Chinese PVY isolate, JL-11. Pathogenicity analysis of dominant strains PVY -SYR-II and PVYN-Wi in six local popular potato cultivars revealed that Kexin 13, Helan 15 and Jizhangshu 12 were susceptible to these two strains with mild mottling or mosaic symptoms expression, while three cultivars, Jinshu 16, Qingshu 9, Xisen 6 were found fully resistant.


Plant Disease ◽  
2016 ◽  
Vol 100 (2) ◽  
pp. 292-297 ◽  
Author(s):  
Mohamad Chikh-Ali ◽  
Hayam Alruwaili ◽  
Dalton Vander Pol ◽  
Alexander V. Karasev

Potato virus Y (PVY) exists as a complex of strains, many of which are recombinants. The practical importance of PVY recombinant strains has increased due to their ability to induce potato tuber necrotic ring spot disease (PTNRD) that seriously affects tuber quality. In Saudi Arabia, potato production has increased fivefold during the last three decades, reaching 460,000 tons per year. Although PVY has been reported as one of the main viruses affecting potatoes, no information is available on PVY strains circulating in the country. In August 2014, a survey was conducted in a seed potato field at Al-Jouf, Saudi Arabia. PVY-positive samples selected based on visual symptoms and serological reactivity were subjected to strain typing using multiplex RT-PCR assays and were determined to represent recombinant PVY strains. Whole genome sequences were determined for two representative isolates, S2 and S9, through direct sequencing of a series of overlapping RT-PCR fragments for each isolate, and found to represent strains PVY-NE11 and PVYZ (SYR-III), respectively. One of the recombinant types, SYR-III, was previously found in nearby Syria and Jordan, but the second recombinant, PVY-NE11, was found before only in the United States. Both recombinants, PVY-NE11 and SYR-III, were previously found associated with PTNRD and thought to be rare. The current identification of PVY-NE11 and SYR-III in seed potato in a new geographic region suggests that these recombinants may not be as rare as previously believed. This is the first report on the occurrence of recombinant strains of PVY in potato in Saudi Arabia, and the first report on the PVY-NE11 strain of PVY found in potato outside of the United States.


Plant Disease ◽  
2003 ◽  
Vol 87 (6) ◽  
pp. 679-685 ◽  
Author(s):  
R. P. Singh ◽  
D. L. McLaren ◽  
X. Nie ◽  
M. Singh

Surveys of commercial and seed potato fields for virus diseases (1998 to 2002) in Manitoba established that Potato virus Y (PVY) is of concern in seed potato production. To determine the prevalence of PVY strains, PVY-infected tubers identified by reverse transcription-polymerase chain reaction (RT-PCR) from surveys (2000 to 2001) were grown for symptom expression and strain characterization by strain-specific RT-PCR, bioassays, and serological assays. Of the samples collected (2000 to 2001) and tested by RT-PCR, 4.0% contained PVY. Further analysis of the PVY-positive samples by a duplex RT-PCR facilitating the simultaneous detection of common (PVYO) and tobacco veinal necrosis strains (PVYN/NTN) indicated that 37.5% contained PVYO and 63.5% contained PVYN-type isolates. Analysis of the PVYN-type samples using three monoclonal antibodies (MAbs) showed that all reacted with only the PVYO MAbs and not with the PVYN-specific MAb. Partial nucleotide sequences of both ends of PVY-RNA showed that the PVYN-type isolates resembled those reported in 1996 from Manitoba. These isolates are designated as PVYN:O. In view of the increased incidence of PVYN:O in one production area, seed tubers imported from other provinces of Canada and the neighboring United States were analyzed for PVYN:O. The PVYN:O was detected in imported seeds from Minnesota, Montana, and North Dakota.


Plant Disease ◽  
2020 ◽  
Vol 104 (12) ◽  
pp. 3110-3114
Author(s):  
Mariana Rodriguez-Rodriguez ◽  
Mohamad Chikh-Ali ◽  
Steven B. Johnson ◽  
Stewart M. Gray ◽  
Nellie Malseed ◽  
...  

Potato virus Y (PVY) is one of the main viruses affecting potato in Australia. However, molecular characterization of PVY isolates circulating in potato in different states of Australia has not yet been thoroughly conducted. Only nonrecombinant isolates of three biological PVY strains collected from potato were reported previously from Western Australia and one from Queensland. Here, PVY isolates collected from seed potato originating in Victoria, Australia, and printed on FTA cards, were subjected to strain typing by RT-PCR, with three isolates subjected to whole genome sequencing. All the 59 PVY isolates detected during two growing seasons were identified to be recombinants based on two RT-PCR assays. No nonrecombinant PVY isolates were identified. All the RT-PCR typed isolates belonged to the PVYNTN strain. Sequence analysis of the whole genomes of three isolates suggested a single introduction of the PVYNTN strain to Australia but provided no clues as to where this introduction originated. Given the association of the PVYNTN strain with potato tuber damage, growers in Australia should implement appropriate strategies to manage PVYNTN in potato.


Plant Disease ◽  
2012 ◽  
Vol 96 (7) ◽  
pp. 1074-1074 ◽  
Author(s):  
O. J. Alabi ◽  
J. M. Crosslin ◽  
N. Saidov ◽  
R. A. Naidu

Potato (Solanum tuberosum L.) is widely grown as a staple food and cash crop in Tajikistan and is an important food security crop in the country. In June 2011, we conducted a survey of potatoes in farmers' fields in the Buston and Dushanbe regions (about 200 miles apart) of Tajikistan. Potato plants with stunted growth and leaves showing chlorotic spots, curling, and necrotic spots and rings were observed with the disease incidence monitored in 10 fields each in Buston and Dushanbe areas varying between 10 and 60%. Representative samples from symptomatic plants tested positive for Potato virus Y (PVY) using virus-specific immunostrips (Agdia Inc., Elkhart, IN). Leaf samples from symptomatic plants were collected from Buston and Dushanbe areas, imprinted on FTA Classic Cards (Whatman International Ltd., Maidstone, UK), air dried, and shipped to the lab at Washington State University for confirmatory diagnostic tests. Total nucleic acids were eluted from FTA cards (1) and subjected to reverse transcription (RT)-PCR with primers (PVY/Y4A and PVY/Y3S) specific to the coat protein of PVY (3). Samples infected with PVY ordinary strain (PVYO), tuber necrosis strain (PVYNTN), tobacco veinal necrosis strains (PVYEU-N and PVYNA-N), and a recombinant strain (PVYN:O) were included as references to validate RT-PCR results. A single DNA product of approximately 480 bp was amplified from potato samples that tested positive with PVY-specific immunostrips. The amplified fragments from two samples from Dushanbe and six from Buston areas were cloned separately into pCR2.1 (Invitrogen Corp., Carlsbad, CA) and two independent clones per amplicon were sequenced from both orientations. Pairwise comparison of these sequences showed 90 to 100% identity among the cloned amplicons (GenBank Accession Nos. JQ743609 to JQ743616) and 90 to 100% with corresponding nucleotide sequence of reference PVY strains (GenBank Accession Nos. JQ743617 to JQ743621). A global phylogenetic analysis of sequences revealed the presence of PVYO in both samples from Dushanbe and one sample from Buston regions and presence of PVYNTN in the remaining five samples from the Buston region. Because of the possible occurrence of mixed infections of PVY strains (2), further studies are needed to determine the presence of mixed infections of two or more strains of PVY and their specificity to potato cultivars. To our knowledge, this study represents the first confirmed report of two distinct strains of PVY in potato in Tajikistan. The occurrence of PVYNTN, a quarantine pathogen in many countries (2), warrants additional investigations to improve sanitary status of potato fields and to facilitate the availability of virus-free seed in clean plant programs for significant yield increases in Tajikistan. References: (1) O. J. Alabi et al. J. Virol. Methods 154:111, 2008. (2) S. Gray et al. Plant Dis. 94:1384, 2010. (3) R. P. Singh et al. J. Virol. Methods 59:189, 1996.


2014 ◽  
Vol 29 (1) ◽  
pp. 9-19 ◽  
Author(s):  
Drago Milosevic ◽  
Slobodan Milenkovic ◽  
Pantelija Peric ◽  
Svetomir Stamenkovic

Aphids are the most important vectors of potato viruses during the crop?s growing season. The most widespread and damaging viruses, the potato virus Y and potato leaf roll virus, are transmitted by aphids in non-persistent and persistent manner, respectively. The two viruses cause the greatest concern of potato producers and a great constraint to seed potato production in Serbia, the region and across the world. Potato virus Y is particularly harmful, given its distribution and spreading rate. Seed potato production systems under well-managed conditions involve a series of virus control measures, including the monitoring of outbreaks of winged aphids, their abundance and species composition, in order to forecast virosis, i.e. potential plant and tuber infection periods. Monitoring the aphid vectors of potato viruses enables determination of optimum dates for haulm destruction when higher than normal numbers of winged aphids as vectors of economically harmful diseases have been observed. Haulm destruction in a potato crop reduces the risk of plant infection and virus translocation from the aboveground parts to tubers, thus keeping the proportion of infected tubers within tolerance limits allowed for certain categories of seed potatoes. This practice has positive effects if used in combination with other viral disease control measures; otherwise, it becomes ineffective. This paper provides an integral analysis of the effects and role of monitoring outbreaks of aphids, their abundance and species composition in timing haulm growth termination to prevent plant infection, virus translocation and tuber infestation in potato crops in Serbia and the wider region.


Plant Disease ◽  
2014 ◽  
Vol 98 (11) ◽  
pp. 1589-1589 ◽  
Author(s):  
X. L. Liu ◽  
Q. Wei ◽  
B. Hong ◽  
X. T. Zhao

Chrysanthemum (Chrysanthemum morifolium Ramat.) is a commercially important ornamental grown worldwide, and is also extensively used as an edible and medicinal plant. In the present work, viruses and viroids infecting chrysanthemum were investigated in China in 2012 and 2013. Typical viral symptoms were observed in field-grown chrysanthemum with leaf yellowing and mottled leaves in Wenjiang District, Sichuan Province, China. The incidence of these symptoms in the field was 12.3%. Chrysanthemum virus B (CVB), Tomato aspermy virus (TAV), Cucumber mosaic virus (CMV), Tobacoo mosaic virus (TMV), Chrysanthemum stunt viroid (CSVd), and Chrysanthemum chlorotic mottle viroid (CChMVd), which had previously been reported to infect chrysanthemum in China (2,3), were not detected by RT-PCR assay. Since these symptomatic chrysanthemum plants grew next to a tobacco field, viruses affecting tobacco were suspected as possible cause. Sixteen symptomatic leaves and 12 non-symptomatic leaves were collected and tested for Potato virus Y (PVY) presence using commercial PVY-specific DAS-ELISA kits (Catalog no. PSA20001, Agdia) Six samples were found positive for PVY. RT-PCR tests using specific primers for CP gene (CP-F 5′-ACTGTGATGAATGGGCTTATG-3′; CP-R 5′-GGCATATATGGTTCCTTTTTG-3′) (4) amplified a single, expected 218-bp DNA fragment from chrysanthemum extracts from all six samples positive for PVY in ELISA. These six PCR fragments were sequenced and found 100% identical to each other. The sequence (GenBank Accession No. KJ174515) shared 99% identity with corresponding sequences of several PVY isolates (NC_001616, EF026076, HM590407, and JQ924288). The same six positive samples were subjected to a multiplex RT-PCR assay (1) to identify the PVY strain type, and all six PVY samples from Sichuan were found to belong to the PVYN-Wi strain. To our knowledge, this is the first report of the PVYN-Wi strain infecting chrysanthemum in Sichuan, China. References: (1) M. Chikh Ali et al. Plant Dis. 10:1370, 2013. (2) E. A. Nassar et al. Int. J. Virol. 8:14, 2012. (3) H. Yamamoto et al. J. Gen. Plant Pathol. 71:156, 2005. (4) J. Q. Zhang et al. J. Phytopathol. 161:92, 2013.


Plant Disease ◽  
2019 ◽  
Vol 103 (1) ◽  
pp. 137-142 ◽  
Author(s):  
Mohamad Chikh-Ali ◽  
Mariana Rodriguez-Rodriguez ◽  
Kelsie J. Green ◽  
Dong-Jun Kim ◽  
Sang-Min Chung ◽  
...  

Potato is an important source of food in South Korea, and viruses represent a significant threat to sustainable and profitable potato production. However, information about viruses affecting the potato crop in South Korea is limited. In 2017, potato plants of five cultivars exhibiting foliar mosaic, crinkling, and mottle were collected in two seed potato production areas, in Gangwon-do and Jeollabuk-do Provinces, and subjected to virus testing and characterization. Potato virus Y (PVY) was found associated with mosaic symptoms, and samples were characterized using reverse transcription polymerase chain reaction (RT-PCR) and whole genome sequencing. All analyzed PVY-positive samples were found to represent the same recombinant PVY strain: PVYNTN. Three PVY isolates were subjected to whole genome sequencing using overlapping RT-PCR fragments and Sanger methodology, and all three were confirmed to represent strain PVYNTNa after a recombination analysis of the complete genomes. In phylogenetic analysis, the three South Korean isolates were placed most closely to several PVYNTNa isolates reported from Japan and Vietnam, suggesting a common source of infection. This is the first report and complete molecular characterization of a PVYNTN strain present in the country, and because this strain induces tuber necrotic ringspot disease in susceptible cultivars of potato, appropriate management tools need to be implemented to mitigate potential tuber quality losses.


Plant Disease ◽  
2014 ◽  
Vol 98 (2) ◽  
pp. 287-287 ◽  
Author(s):  
T. A. Damayanti ◽  
O. J. Alabi ◽  
S. H. Hidayat ◽  
J. M. Crosslin ◽  
R. A. Naidu

Potato (Solanum tuberosum) is an important vegetable crop in Indonesia. A small survey was conducted for virus diseases in November 2011 in Lembang, West Java, as part of assessing the sanitary status of potatoes produced in farmers' fields. Among the six potato fields surveyed, one field had nearly 20% of plants displaying stunted growth with leaves showing mild chlorotic spots and reduced size of lamina. Tubers harvested from symptomatic plants showed no necrosis symptoms. Symptomatic leaves from three representative potato plants were positive for Potato virus Y (PVY) when tested with PVY-specific immunostrips (Agdia Inc., Elkhart, IN). Leaf samples from virus-positive plants were imprinted on FTA Classic Cards (Whatman International Ltd., Maidstone, UK), air dried, and shipped to Washington State University for confirmatory diagnostic tests. Total nucleic acids were eluted from FTA cards (1) and subjected to reverse transcription (RT)-PCR using primers (PVY/Y4A and PVY/Y3S) specific to the coat protein (CP) of PVY (3). Nucleic acid extracts from samples infected with PVY ordinary strain (PVYO), tuber necrosis strain (PVYNTN), tobacco veinal necrosis strains (PVYEU-N and PVYNA-N), and a recombinant strain (PVYN:O) were included as standards to validate RT-PCR assays. The approximately 480-bp DNA fragment, representing a portion of the CP, amplified in RT-PCR was cloned into pCR2.1 (Invitrogen Corp., Carlsbad, CA). DNA isolated from four independent recombinant clones was sequenced from both orientations. Pairwise comparison of these sequences (GenBank Accession Nos. KF261310 to 13) showed 100% identity among themselves and 93 to 100% identity with corresponding sequences of reference strains of PVY available in GenBank (JQ743609 to 21). To our knowledge, this study represents the first confirmed report of PVY in potato in West Java, Indonesia. Studies are in progress to assess the prevalence of PVY in other potato-growing regions of Indonesia and document the presence of different strains of the virus (2). Since the majority of farmers in Indonesia plant seed selected from their previous potato crop, there is an increased risk of primary and secondary spread of PVY through the informal seed supply system, leading to its increased significance to potato production in Indonesia. Therefore, strengthening foundation seed potato and supply chain programs will promote the production of virus-free potatoes in Indonesia. References: (1) O. J. Alabi et al. Plant Dis. 96:107, 2012. (2) A. Karasev and S. M. Gray. Am. J. Potato Res. 90:7, 2013. (3) R. P. Singh et al. J. Virol. Methods 59:189, 1996.


Sign in / Sign up

Export Citation Format

Share Document