scholarly journals Response of Bell Pepper Cultivars to Bacterial Spot Pathogen Races that Individually Overcome Major Resistance Genes

Plant Disease ◽  
1998 ◽  
Vol 82 (2) ◽  
pp. 181-186 ◽  
Author(s):  
C. S. Kousik ◽  
D. F. Ritchie

The effect of major resistance genes (Bs1, Bs2, and Bs3) or gene combinations for resistance to bacterial spot of bell peppers (Xanthomonas campestris pv. vesicatoria) in 15 commercial cultivars on disease reduction and yield were studied during 1995 and 1996. Reaction of cultivars to specific races (races 1, 2, or 3) of the pathogen corresponded with seed company claims for resistance against these races. Races 1 to 4 were used as initial inoculum in 1995, and races 1 to 6 in 1996 field experiments. Cultivars with no known resistance genes to bacterial spot (e.g., Camelot, Jupiter, and Valiant), a single resistance gene (X3R Camelot, King Arthur), or a combination of Bs1 and Bs3 genes (Guardian, Sentinel, and Admiral) were severely diseased. Yields were reduced in all inoculated cultivars compared to non-inoculated cultivars used as controls. Although races 4 and 6 caused significant disease in cultivars with only Bs1 (King Arthur) or Bs2 (X3R Camelot) genes, cultivars with a combination of Bs1 and Bs2 (Boynton Bell, PR9300-8) had much lower levels of bacterial spot. Roger 4178, a hybrid with a combination of Bs1, Bs2, and Bs3 genes, had the lowest disease ratings. Overall, race 3 was predominant during 1995, while races 3 and 6 were recovered most frequently in 1996.

1994 ◽  
Vol 4 (4) ◽  
pp. 356-358 ◽  
Author(s):  
C.S. Kousik ◽  
D.C. Sanders ◽  
D.F. Ritchie

The impact of a single hail storm injury in combination with bacterial spot caused by Xanthomonas campestris pv. vesicatoria was assessed on three commercial pepper (Capsicum annuum) cultivars—King Arthur, Jupiter, and Rebell. In addition, the effectiveness of copper plus maneb sprays on hail-damaged plants to suppress bacterial spot was evaluated. A hail storm of ≈5-min duration severely damaged and defoliated the pepper plants. Severe bacterial spot was observed 10 days later on all plants. Disease ratings taken 2 weeks after the hail storm were significantly greater than ratings before the storm. Unsprayed plots of all three cultivars had the greatest disease and the least yield. Plots sprayed weekly (7-day schedule) had a significantly greater yield and less disease compared to unsprayed and biweekly sprayed (14-day schedule) plots for all three cultivars. The combination of hail damage and bacterial spot resulted in a 6-fold reduction in yield in the absence of copper plus maneb sprays and a 2-fold reduction with weekly sprays when compared to the previous season with no hail injury, but similar levels of bacterial spot disease. Disease ratings were less and yields were greater for `King Arthur', than for `Jupiter' and `Rebell'. A judicious copper plus maneb spray program can suppress bacterial spot and help recovery of a young pepper crop when hail damage occurs.


1999 ◽  
Vol 89 (11) ◽  
pp. 1066-1072 ◽  
Author(s):  
C. S. Kousik ◽  
D. F. Ritchie

Disease severity caused by races 1 through 6 of Xanthomonas campestris pv. vesicatoria on eight near-isogenic lines (isolines) of Early Calwonder (ECW) with three major resistance genes (Bs1, Bs2, and Bs3) in different combinations was evaluated in the greenhouse and field. Strains representing races 1, 3, 4, and 6 caused similar high levels of disease severity, followed by races 2 and 5 on susceptible ECW. Race 3 caused severe disease on all isolines lacking resistance gene Bs2. Race 4, which defeats Bs1 and Bs2, caused less disease on isoline ECW-12R (carries Bs1 + Bs2), than on isolines ECW, ECW-10R (carries Bs1), and ECW-20R (carries Bs2). Similar results were obtained with race 4 strains in field studies conducted during 1997 and 1998. In greenhouse studies, race 6, which defeats all three major genes, caused less disease on isoline ECW-13R (carries Bs1 + Bs3) and ECW-123R (carries Bs1 + Bs2 + Bs3) than on isolines ECW, ECW-10R, ECW-20R, and ECW-30R (carries Bs3), but not on ECW-23R (carries Bs2 + Bs3). In greenhouse studies with commercial hybrids, strains of races 4 and 6 caused less disease on Boynton Bell (carries Bs1 + Bs2) than on Camelot (carries no known resistance genes), King Arthur (carries Bs1), and X3R Camelot (carries Bs2). Race 6 caused less disease on hybrid R6015 (carries Bs1 + Bs2 + Bs3) and Sentinel (carries Bs1 + Bs3) than on Camelot. Residual effects were not as evident in field studies with race 6 strains. Defeated major resistance genes deployed in specific gene combinations (i.e., gene pyramids) were associated with less area under the disease progress curve than when genes were deployed individually in isolines of ECW or commercial hybrids. Successful management of bacterial spot of pepper is achieved incrementally by integrating multiple tactics. Although there is evidence of residual effects from defeated genes, these effects alone likely will not provide acceptable bacterial spot control in commercial production fields. However, when combined with sanitation practices and a judicious spray program, pyramids of defeated resistance genes may aid in reducing the risk of major losses due to bacterial spot.


Genes ◽  
2021 ◽  
Vol 12 (9) ◽  
pp. 1351
Author(s):  
Qingquan Zhu ◽  
Shenghua Gao ◽  
Wenli Zhang

Bacterial spot (BS), caused by Xanthomonas campestris pv. Vesicatoria (Xcv), severely affects the quality and yield of pepper. Thus, breeding new pepper cultivars with enhanced resistance to BS can improve economic benefits for pepper production. Identification of BS resistance genes is an essential step to achieve this goal. However, very few BS resistance genes have been well characterized in pepper so far. In this study, we reanalyzed public multiple time points related to RNA-seq data sets from two pepper cultivars, the Xcv-susceptible cultivar ECW and the Xcv-resistant cultivar VI037601, post Xcv infection. We identified a total of 3568 differentially expressed genes (DEGs) between two cultivars post Xcv infection, which were mainly involved in some biological processes, such as Gene Ontology (GO) terms related to defense response to bacterium, immune system process, and regulation of defense response, etc. Through weighted gene co-expression network analysis (WGCNA), we identified 15 hub (Hub) transcription factor (TF) candidates in response to Xcv infection. We further selected 20 TFs from the gene regulatory network (GRN) potentially involved in Xcv resistance response. Finally, we predicted 4 TFs, C3H (p-coumarate 3-hydroxylase), ERF (ethylene-responsive element binding factor), TALE (three-amino-acid-loop-extension), and HSF (heat shock transcription factor), as key factors responsible for BS disease resistance in pepper. In conclusion, our study provides valuable resources for dissecting the underlying molecular mechanism responsible for Xcv resistance in pepper. Additionally, it also provides valuable references for mining transcriptomic data to identify key candidates for disease resistance in horticulture crops.


HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 547a-547
Author(s):  
Geunhwa Jung ◽  
James Nienhuis ◽  
Dermot P. Coyne ◽  
H.M. Ariyarathne

Common bacterial blight (CBB), bacterial brown spot (BBS), and halo blight (HB), incited by the bacterial pathogens Xanthomonas campestris pv. phaseoli (Smith) Dye, Pseodomonas syringae pv. syringa, and Pseudomonas syringae pv. phaseolicola, respectively are important diseases of common bean. In addition three fungal pathogens, web blight (WB) Thanatephorus cucumeris, rust Uromyces appendiculatus, and white mold (WM) Sclerotinia sclerotiorum, are also destructive diseases attacking common bean. Bean common mosaic virus is also one of most major virus disease. Resistance genes (QTLs and major genes) to three bacterial (CBB, BBS, and HB), three fungal (WB, rust, and WM), and one viral pathogen (BCMV) were previously mapped in two common bean populations (BAC 6 × HT 7719 and Belneb RR-1 × A55). The objective of this research was to use an integrated RAPD map of the two populations to compare the positions and effect of resistance QTL in common bean. Results indicate that two chromosomal regions associated with QTL for CBB resistance mapped in both populations. The same chromosomal regions associated with QTL for disease resistance to different pathogens or same pathogens were detected in the integrated population.


2005 ◽  
Vol 71 (12) ◽  
pp. 8284-8291 ◽  
Author(s):  
Huseyin Basim ◽  
Gerald V. Minsavage ◽  
Robert E. Stall ◽  
Jaw-Fen Wang ◽  
Savita Shanker ◽  
...  

ABSTRACT We characterized the copper resistance genes in strain XvP26 of Xanthomonas campestris pv. vesicatoria, which was originally isolated from a pepper plant in Taiwan. The copper resistance genes were localized to a 7,652-bp region which, based on pulsed-field gel electrophoresis and Southern hybridization, was determined to be located on the chromosome. These genes hybridized only weakly, as determined by Southern analysis, to other copper resistance genes in Xanthomonas and Pseudomonas strains. We identified five open reading frames (ORFs) whose products exhibited high levels of amino acid sequence identity to the products of previously reported copper genes. Mutations in ORF1, ORF3, and ORF4 removed copper resistance, whereas mutations in ORF5 resulted in an intermediate copper resistance phenotype and insertions in ORF2 had no effect on resistance conferred to a copper-sensitive recipient in transconjugant tests. Based on sequence analysis, ORF1 was determined to have high levels of identity with the CopR (66%) and PcoR (63%) genes in Pseudomonas syringae pv. tomato and Escherichia coli, respectively. ORF2 and ORF5 had high levels of identity with the PcoS gene in E. coli and the gene encoding a putative copper-containing oxidoreductase signal peptide protein in Sinorhizobium meliloti, respectively. ORF3 and ORF4 exhibited 23% identity to the gene encoding a cation efflux system membrane protein, CzcC, and 62% identity to the gene encoding a putative copper-containing oxidoreductase protein, respectively. The latter two ORFs were determined to be induced following exposure to low concentrations of copper, while addition of Co, Cd, or Zn resulted in no significant induction. PCR analysis of 51 pepper and 34 tomato copper-resistant X. campestris pv. vesicatoria strains collected from several regions in Taiwan between 1987 and 2000 and nine copper-resistant strains from the United States and South America showed that successful amplification of DNA was obtained only for strain XvP26. The organization of this set of copper resistance genes appears to be uncommon, and the set appears to occur rarely in X. campestris pv. vesicatoria.


2014 ◽  
Vol 8 (30) ◽  
pp. 2881-2885 ◽  
Author(s):  
C. Shenge Kenneth ◽  
B. Mabagala Robert ◽  
N. Mortensen Carmen ◽  
Wydra Kerstin

2020 ◽  
Author(s):  
Xian Xin Wu ◽  
Yue Gao ◽  
Qiang Bian ◽  
Qian Sun ◽  
Xin Yu Ni ◽  
...  

Abstract Background: Wheat powdery mildew, caused by the biotrophic fungus Blumeria graminis f. sp. tritici ( Bgt ), is a serious disease of wheat worldwide that can cause significant yield losses. Growing resistant cultivars is the most cost-effective and eco-soundly strategy to manage the disease. Therefore, a high breeding priority is to identify genes that can be readily used either singly or in combination for effective resistance to powdery mildew and alos in combination with genes for resistance to other diseases. Yunnan Province, with complex and diverse ecological environments and climates, is one of the main wheat growing regions in China. This region provides initial inoculum for starting epidemics of wheat powdery mildew in the region and other regions and thus, plays a key role in the regional and large-scale epidemics of the disease throughout China. The objectives of this study were to evaluate seedling resistance of 69 main wheat cultivars to powdery mildew and to determine the presence of resistance genes Pm3 , Pm8 , Pm13 , Pm16 , and Pm21 in these cultivars using gene specific DNA markers. Results: Evaluation of 69 wheat cultivars with six Bgt isolates showed that only four cultivars were resistant to all tested isolates, indicating that the overall level of powdery mildew resistance of Yunnan wheat cultivars is inadequate. The molecular marker results showed that 27 cultivars likely have at least one of these genes. Six cultivars were found likely to have Pm3 , 18 likely to have Pm8 , 5 likely to have Pm16 , and 3 likely to have Pm21 . No cultivar was found to carry Pm13 . Conclusion: The information on the presence of the Pm resistance genes in Yunnan wheat cultivars can be used in future wheat disease breeding programs. In particular, cultivars carrying Pm21 , which is effective against all Bgt races in China, should be pyramided with other effective genes to developing new cultivars with durable resistance to powdery mildew. Keywords: Blumeria graminis f. sp. tritici , Pm gene, molecular markers, wheat


2014 ◽  
Vol 14 (64) ◽  
pp. 8998-9015
Author(s):  
K Misrak ◽  
◽  
A Amare ◽  
N Dechassa N Dechassa

Soil -borne plant pathogens cause heavy losses to all major crops, leading to reductions in both yield and quality. Soil solarisation and bio- fumigation offer disease management options that are safe and reduce the use of pesticides for soil -borne plant pathogens. Mustard plant releases antimicrobial hydrolysis products, notably isothiocyanates when used as a bio- fumigant. Bacterial spot of tomato caused by Xanthomonas campestris pv. vesicatoria (Xcv) can survive in soil and plant debris, which serve as a primary inoculum for infecting the next tomato crop. An experiment was carried out with the objective of evaluating effects of soil solarisation and the use of Ethiopian mustard ( Brassica carinata A. Braun) as a bio -fumigant to control bacterial spot disease and on yield of tomato. The tr eatments consisted of six types of potted soil medium (solarised at Haramaya and Dire Dawa, bio -fumigated, biofumigated as well as solarised at Haramaya and Dire Dawa, and untreated control as non- solarised non- biofumigated pots). Treated tomato seeds were planted and fruit yields were compared among treatments. Potted soil was inoculated with the pathogen, Xcv, belonging to T2P2 race group. The total microbial and Xcv counts were done before as well as after setting up the experiment. The results revealed that solarisation reduced the population of Xcv from 10.68 to 8.79 CFU g -1 , total bacterial population from 11.27 to 9.86 CFU g -1 , and total actinomycete counts from 11.69 to 9.44 CFU g -1 while bio -fumigation had a non- significant effect on Xcv and total microbial counts. None of the treatments exhibited a significant effect on fungal counts. The fruit yield of tomato grown on biofumigated as well as solarised soil was the highest (91.18 t ha -1 ) as compared to the other treatments. It can, therefore, be con cluded that solarisation and bio- fumigation cannot be used as a bio- rational option for effective management of Xcv on tomato but the two methods could be used to increase tomato yield in the presence of the pathogen.


Author(s):  
Andrew Scott ◽  
Roger Murray ◽  
Yuan-Ching Tien ◽  
Edward Topp

The present study evaluated if enteric bacteria or antibiotic resistance genes carried in fecal amendments contaminate the hay at harvest, representing a potential route of exposure to ruminants that consume the hay. In field experiments, dairy manure was applied to a hay field for three successive growing seasons, and biosolids applied to a hay field for one growing season. Various enteric bacteria in the amendments were enumerated by viable plate count, and selected gene targets were quantified by qPCR. Key findings include the following: At harvest, hay receiving dairy manure or biosolids did not carry more viable enteric bacteria than did hay from unamended control plots. Fermentation of hay did not result in a detectable increase in viable enteric bacteria. The application of dairy manure or biosolids did result in a few gene targets being more abundant on hay at the first harvest. Fermentation of hay did result in an increase in the abundance of gene targets, but this occurred both with hay from amended and control plots. Overall, application of fecal amendments will result in an increase in the abundance of some gene targets associated with antibiotic resistance on first cut hay.


Sign in / Sign up

Export Citation Format

Share Document