scholarly journals Leafroll Virus Is Common in Cultivated American Grapevines in Western New York

Plant Disease ◽  
1998 ◽  
Vol 82 (9) ◽  
pp. 1062-1062 ◽  
Author(s):  
W. F. Wilcox ◽  
Z.-Y. Jiang ◽  
D. Gonsalves

American grapevines (Vitis labrusca L. ‘Niagara’; Vitis × labruscana L. H. Bailey ‘Concord’ and ‘Catawba’; V. labrusca × V. riparia Michx. ‘Elvira’) from 24 vineyards in the New York portion of the Lake Erie production region (>13,000 ha cultivated) were tested to explore a possible relationship between virus infection and an unexplained fruit set malady in the district. One-year-old cane segments were collected 4 to 6 weeks before budbreak from 65 individual vines, which previously had been identified as malady positive or negative. Preparations from bark scrapings were tested for the presence of double-stranded (ds) RNA and for fan leaf degeneration virus, tobacco streak virus, and grapevine leafroll associated closterovirus-3 (GLRaV-3) by enzyme-linked immunosorbent assay (ELISA). Mechanical transmission of other potential viruses to Chenopodium quinoa was attempted with sap extracted from young shoots forced from intact segments of sampled canes. GLRaV-3 was detected in 17 (26%) of the sampled vines from eight (33%) of the vineyards, but there was no apparent relationship between infected vines and the fruit set malady. Vines of all four cultivars were infected. dsRNA was detected in all 17 samples positive for GLRaV-3 plus four additional samples. No other viruses were detected. Near harvest, nine vines (from two vineyards) previously testing positive for GLRaV-3 were examined and retested; all nine tested positive again, although none showed any overt symptoms of viral infection. This is believed to be the first report of GLRaV-3 from American grape vineyards in New York. The source of these infections is unknown: all vines were self rooted, the individual vineyards had been planted independently at different times, and V. vinifera and its hybrids are rare in the district. Wild grapevines (primarily V. riparia) are abundant in the region, although it has been reported that leafroll disease does not occur naturally in wild North American grapes (1). Nevertheless, our results indicate that cultivated American grapevines can be common reservoirs of GLRaV-3, and furthermore suggest the need to reassess the possibility that wild grapes also may serve as reservoirs of the virus. Trials are currently underway to determine possible effects of GLRaV-3 on cv. Concord, the most widely planted variety in the region. Reference: (1) A. C. Goheen. 1988. Leafroll. Page 52 in: Compendium of Grape Diseases. R. C. Pearson and A. C. Goheen, eds. American Phytopathological Society, St. Paul, MN.

Plant Disease ◽  
2000 ◽  
Vol 84 (12) ◽  
pp. 1345-1345 ◽  
Author(s):  
S. M. Girgis ◽  
F. Bem ◽  
P. E. Kyriakopoulou ◽  
C. I. Dovas ◽  
A. P. Sklavounos ◽  
...  

In 1994, characteristic viruslike symptoms on grapevine were reported in the collection of the Grapevine Institute in Athens, Greece, on the hybrid Baresana × Baresana. The symptoms were sharp angular mosaic, leaf crinkle, and little leaf. The affected vines showed gradual decline and severe stunting or death. Such vines produced abortive flowers or very few berries with smaller, wrinkled, and nongerminating seeds. Serological testing, by enzyme-linked immunosorbent assay (ELISA), of the affected vines against the most common grapevine viruses Alfalfa mosaic, Arabis mosaic, Grapevine fanleaf, Grapevine fleck, Grapevine A, Rasberry ringspot, and grapevine leafroll-associated viruses gave negative results. A virus was isolated from affected grapevine young leaves by mechanical inoculation of Gomphrena globosa and single lesioned. The virus host range included G. globosa (local and systemic dark red or necrotic lesions), Chenopodium quinoa (necrotic local lesions and systemic mottle), and three tobacco cultivars (sharp necrotic local lesions, 1 to 3 mm in diameter). Pollination of C. quinoa with pollen from infected plant gave about 30% infected seedlings. The virus was purified from C. quinoa by differential centrifugation using 0.02 M phosphate buffer pH 8.0, containing 0.01 M DIECA and 0.01 M sodium thioglycolate as extraction buffers. In a purified preparation, quasisphaerical virus particles of about 29 nm were observed. Electrophoretic mobility of the viral coat protein showed a molecular weight of 30 kDa. Using purified preparations, an antiserum was obtained with a titer of 1:1024 in microprecipitin test and an optimum IgG dilution in ELISA of 1:10,000 for maximum absorption at OD405 nm Using degenerate primers designed from homologous regions in RNA-2 corresponding to a fragment of the polymerase gene of Ilarviruses, the expected 381-bp polymerase chain reaction product was obtained. This product was cloned and sequenced. Comparisons with sequence data from the homologous regions of RNA-2 of other known Ilarviruses, showed that the sequence of the above 381-bp amplicon shared 72% sequence similarity with Tobacco streak virus, 67% of Citrus variegation virus and Spinach latent virus, 66% of Asparagus virus 2 and Elm mottle virus, and 65% of Citrus leaf rugose virus. Based on the above data, it is concluded that the isolated virus is an Ilarvirus with closest similarity to Tobacco streak virus. From the relative bibliography (1–3) it appears that the virus reported here is different from Grapevine line pattern virus, a possible Ilarvirus, previously reported from Hungary. References: (1) J. Lehoczky et al. Kertgazdasag 19:61, 1987. (2) J. Lehoczky et al. Phytoparasitica 17:59, 1989. (3) J. Lehoczky et al. Phytopathol. Medit. 31:115, 1992.


Plant Disease ◽  
1998 ◽  
Vol 82 (12) ◽  
pp. 1402-1402 ◽  
Author(s):  
H. E. Waterworth

A honeysuckle (Lonicera fragrantissima) shrub on the grounds of the former Plant Quarantine Station, Glenn Dale, MD, had chlorotic leaves on some shoot tips and a mild veinal chlorosis. Young leaves were triturated in buffer and rub-inoculated onto a series of potential indicator hosts. The virus incited necrotic local lesions and necrosis of the growing point in Chenopodium quinoa, etched ringspots on inoculated leaves of Nicotiana tabacum Xanthi nc, mosaic in Zinnia violacea, and chlorotic local lesions in Tetragonia tetragonioides. It did not infect any of 46 other herbaceous genera in families Cucurbitaceae, Fabaceae, Asteraceae, Solanaceae, or Brassicaceae. In gel diffusion tests with symptomatic leaves from tobacco, this virus reacted with antiserum to tobacco streak virus (TSV) HR strain, but did not react with antisera to alfalfa mosaic or with antisera to 12 viruses in the NEPO or Sobemovirus groups. Virus in leaves directly from the source shrubs, tested by enzyme-linked immunosorbent assay (ELISA), also reacted with TSV strain HF antiserum. Examination by electron microscopy of leaf dips revealed isometric particles 27 nm in diameter. The now 12-ft tall shrubs were grown from seed imported from China in 1914 (PI 40689). This species is now widely commercially available in the U.S. and grown for its fragrant late winter flowers (2). Viral-infected Lonicera spp. have been reported from Europe, Russia, Japan, and Canada (1). TSV is reported to be seed-borne in several other genera. Among other viruses reported from honeysuckle are Lonicera latent carlavirus, tobacco leaf curl geminivirus, alfalfa mosaic virus, tomato bushy stunt virus, a rhabdovirus, and an aphid transmitted virus. References: (1) R. W. Fulton. CMI/AAB Descriptions of Plant Viruses No. 307, 1985. (2) C. J. Perkin. Plantsman 12:215, 1991.


Author(s):  
K. Saratbabu ◽  
K. Vemana ◽  
A.K. Patibanda ◽  
B. Sreekanth ◽  
V. Srinivasa Rao

Background: Peanut stem necrosis disease (PSND) caused by Tobacco streak virus (TSV) is a major constraint for groundnut production in Andhra Pradesh (A.P.). However, studies on prevalence and spread of the disease confined to only few districts of A.P. with this background current study focused on incidence and spread of the disease in entire state of A.P. Further an isolate of TSV occurring in A.P. characterized on the basis of genetic features by comparing with other TSV isolates originated from different hosts and locations from world.Methods: Roving survey was conducted during kharif 2017-18 in groundnut growing districts of Andhra Pradesh (A.P.) for peanut stem necrosis disease incidence. Groundnut plants showing PSND symptoms were collected and tested with direct antigen coating enzyme linked immunosorbent assay (DAC-ELISA). Groundnut samples found positive by ELISA once again tested by reverse transcription polymerase chain reaction (RT-PCR). The representative TSV-GN-INDVP groundnut isolate from Prakasham district was maintained on cowpea seedlings by standard sap inoculation method in glasshouse for further molecular characterization. The Phylogenetic tree for coat protein (CP) gene was constructed using aligned sequences with 1000 bootstrap replicates following neighbor-joining phylogeny.Result: Thirty-eight (52.7%) of seventy-two groundnut samples collected from different locations in A.P were given positive reaction to TSV by DAC-ELISA. For the first time, PSND incidence observed in coastal districts (Krishna, Guntur, Sri Pottisriramulu Nellore, Prakasham) of A.P. Maximum PSND incidence recorded from Bathalapalli (22.2%) and the minimum incidence in Mulakalacheruvu (4.1%). The coat protein (CP) gene of TSV-GN-INDVP groundnut isolate was amplified by RT-PCR and it shared maximum per cent nucleotide identity (97.51-98.62%) with TSV isolates from groundnut and other different crops reported in India. All Indian isolates cluster together irrespective of crop and location based on the phylogenetic analysis.


Plant Disease ◽  
2001 ◽  
Vol 85 (11) ◽  
pp. 1210-1210 ◽  
Author(s):  
J. Aramburu

During spring 2001, plants of different tomato (Lycopersicon esculentum) cultivars grown in several commercial fields in the eastern Catalonia Region of Spain had fruit with brown patches and young leaves with rings and a bright necrotic mosaic that progressed to stem necrosis of the apex, which might die and later develop new symptomless shoots. The symptoms were similar to those of Cucumber mosaic virus (CMV) and Tomato spotted wilt virus (TSWV). Sap of tomato sample R1 (in buffered saline [0.02 M sodium phosphate, 0.15 M NaCl at pH 7.2, containing 0.2% 2-mercaptoethanol]) was infective to Cucumis sativus (local necrosis), tomato cv. Marmande (systemic infection consisting of chlorotic local lesions and necrotic mosaic), Nicotiana clevelandii and N. benthamiana (chlorosis and rosetting), and Chenopodium quinoa (chlorotic local lesions, systemic mottle, and leaf distortion). The sap was not infective to N. glutinosa, N. tabacum cv. Xanthi, Datura stramonium, or Gomphrena globosa. The host range data indicated that the infective agent in sample R1 could be Parietaria mottle virus (PMoV) (1). Symptomatic plants inoculated in a greenhouse with the R1 isolate and symptomatic from tomato plants from the field were analyzed by indirect enzyme-linked immunosorbent assay (ELISA) and had minimum ELISA values at least 10-fold higher than healthy controls, using a polyclonal antiserum (provided by P. Roggero) of a tomato strain of PMoV denoted tomato virus 1 (2). The R1 isolate of PMoV was negative in ELISA when analyzed with commercial antisera to TSWV, CMV, Tomato mosaic virus, Tomato bushy stunt virus, Potato Y virus, Tobacco etch virus, Pelargonium zonate spot virus, and Tobacco streak virus. References: (1) P. Caciagli et al. Plant Pathol. 38:577, 1989. (2) P. Roggero et al. J. Plant Pathol. 82:159, 2000.


Plant Disease ◽  
1997 ◽  
Vol 81 (8) ◽  
pp. 959-959 ◽  
Author(s):  
A. S. Kline ◽  
E. J. Anderson

Cowpea aphid-borne mosaic potyvirus (CABMV) is one of several seed-borne viruses known to limit cowpea (Vigna unguiculata (L.) Walp. subsp. unguiculata) production in Africa, Europe, and Asia, but CABMV has not been reported on commercially grown cowpeas in the United States (1). However, a sesame (Sesamum indicum L.)-infecting isolate of CABMV was recently characterized from plants growing near cowpea introduction plots in Georgia (2). In February 1997, we received samples of three seed lots of cowpea cv. Chinese Red that had been harvested in southern Texas during 1996. Approximately 28% of the plants grown from these seed lots expressed strong mosaic symptoms on primary and trifoliate leaves. Viruslike symptoms were reproduced following mechanical transmission to plants of Chinese Red cowpea, Nicotiana benthamiana, and soybean (Glycine max L.) cv. Lee. When Coronet and Pinkeye Purple Hull-BVR cowpeas were inoculated with sap extracts from symptomatic Chinese Red plants, chlorotic lesions developed on inoculated leaves, but only Coronet plants supported symptomless systemic infections. Similarly inoculated plants of Chenopodium quinoa (L.) and common bean (Phaseolus vulgaris L.) cvs. Pinto and Black Valentine developed localized chlorotic lesions. In Ouchterlony gel diffusion assays, extracts from symptomatic cowpea plants did not react with antisera to blackeye cowpea mosaic potyvirus (BlCMV), cucumber mosaic cucu-movirus (CMV), southern bean mosaic sobemovirus, cowpea mosaic comovirus, cowpea severe mosaic comovirus, or cowpea chlorotic mottle bromovirus. In the indirect enzyme-linked immunosorbent assay, sap extracts from symptomatic plants reacted with antiserum to CABMV, giving OD values at A405 of 0.10 to 0.25, and reacted weakly with antiserum to BlCMV, with OD values at A405 less than 0.035. Extracts from healthy control plants gave OD values at A405 less than 0.010. No positive reactions were obtained with antisera to bean yellow mosaic potyvirus, peanut mottle potyvirus, soybean mosaic potyvirus, or CMV. To our knowledge, this is the first report of CABMV in commercially grown cowpea from the U.S. References: (1) A. G. Gillaspie et al. Plant Dis. 79:388, 1995. (2) H. R. Pappu et al. Arch. Virol. 142:1, 1997.


Plant Disease ◽  
2008 ◽  
Vol 92 (3) ◽  
pp. 484-484 ◽  
Author(s):  
V. Mokra ◽  
B. Gotzova ◽  
V. Bezdekova ◽  
P. Dedic ◽  
J. Ptacek

Dahlia is an important ornamental crop in the Czech Republic where they have been grown for more than 150 years. New dahlia cultivars have been selected by Czech plant breeders. Virus diseases, including mosaic and stunt caused mostly by Dahlia mosaic virus, have been a problem. From 2003 to 2005, color breaking was observed in several dahlia cultivars of foreign and Czech origin. White stripes in blossoms were most frequently expressed in the second half of the flowering season. No symptoms are visible in flowers of white and yellow cultivars. It was difficult to characterize symptoms on leaves because most cultivars were infected simultaneously by Dahlia mosaic virus. Sap inoculations of Chenopodium quinoa produced local lesions after 5 to 7 days, followed by systemic chlorosis, necrosis of younger leaves, and death of the shoot apex, indicating possible Tobacco streak virus (TSV) infection (2). Spherical particles (25 to 30 nm) were observed in leaf-dip preparations of samples from experimentally infected C. quinoa plants and analyzed by using transmission electron microscopy. These particles became decorated when using immunoelectron microscopy with TSV IgG (Bioreba, Reinach, Switzerland and Neogen, Ayrshire, Scotland). Samples of 80 dahlia cultivars were tested for TSV infection by ELISA using commercially available kits (Bioreba and Neogen). Most of the samples were grown in a collection of dahlia cultivars of Czech and foreign origin and some were obtained from growers in the Czech Republic. Fifty six dahlia cultivars were shown to be TSV infected. ELISA also indicated a higher concentration of the virus in flowers. The identity of the virus isolated from symptomatic plants was confirmed by reverse transcription (RT)-PCR using total RNA extraction from symptomatic plants. RT-PCR (4), using a primer pair (1) derived from the coat protein gene sequence of TSV (3), was followed by electrophoresis on 1.0% agarose gels. Products of the predicted size (approximately 700 bp) were found in naturally infected dahlia plants (n = 10), systemically infected host plants C. quinoa (n = 10), and symptomatic Nicotina megalosiphon (n = 10) that scored as TSV positive by ELISA. No bands of this size were seen in negative controls. To our knowledge, this is the first detection of TSV in the Czech Republic. References: (1) A. I. Bhat et al. Arch. Virol. 147:651, 2002. (2) A. A. Brunt Plant Pathol. 17:119, 1968. (3) B. J. C. Cornelissen et al. Nucleic Acids Res.12:2427, 1984. (4) S. S. Pappu et al. J. Virol. Methods 4:9, 1993.


Plant Disease ◽  
2004 ◽  
Vol 88 (10) ◽  
pp. 1069-1074 ◽  
Author(s):  
A. R. Golnaraghi ◽  
N. Shahraeen ◽  
R. Pourrahim ◽  
Sh. Farzadfar ◽  
A. Ghasemi

A survey was conducted to determine the incidence of Alfalfa mosaic virus (AlMV), Bean common mosaic virus (BCMV), Bean yellow mosaic virus (BYMV), Blackeye cowpea mosaic virus (BlCMV), Cucumber mosaic virus (CMV), Pea enation mosaic virus (PEMV), Peanut mottle virus (PeMoV), Soybean mosaic virus (SMV), Tobacco mosaic virus (TMV), Tobacco ringspot virus (TRSV), Tobacco streak virus (TSV), Tomato ringspot virus (ToRSV), and Tomato spotted wilt virus (TSWV) on soybean (Glycine max) in Iran. Totals of 3,110 random and 1,225 symptomatic leaf samples were collected during the summers of 1999 and 2000 in five provinces of Iran, where commercial soybean is grown, and tested by enzyme-linked immunosorbent assay (ELISA) using specific polyclonal antibodies. Serological diagnoses were confirmed by electron microscopy and host range studies. The highest virus incidence among the surveyed provinces was recorded in Mazandaran (18.6%), followed by Golestan (15.7%), Khuzestan (14.2%), Ardabil (13.9%), and Lorestan (13.5%). Incidence of viruses in decreasing order was SMV (13.3%), TSWV (5.4%), TRSV (4.2%), TSV (4.1%), PEMV (2.9%), BYMV (2.2%), ToRSV (2.1%), AlMV (1.3%), BCMV (0.8%), and CMV (0.6%). Additionally, 1.5% of collected leaf samples had positive reactions in ELISA with antiserum to TMV, indicating the possible infection of soybeans in Iran with a Tobamovirus that is related serologically to TMV. Of 195 leaves from plants showing soybean pod set failure syndrome (PSF) in Mazandaran and Lorestan, only 14 (7.2%) samples had viral infection. No correlation was observed between PSF and presence of the 13 viruses tested, suggesting the involvement of other viruses or factors in this syndrome. To investigate the presence of seed-borne viruses, including SMV, TRSV, ToRSV, and TSV, 7,830 soybean seeds were collected randomly at harvesting time from the major sites of soybean seed production located in Mazandaran and Golestan provinces. According to ELISA analyses of germinated seedlings, 7.1 and 8.9% of the seed samples from Golestan and Mazandaran provinces, respectively, transmitted either SMV, TRSV, ToRSV, or TSV through seed. We also showed that SMV and other seed transmissible viruses, as well as TSWV, usually are the most prevalent viruses in soybean fields in Iran. In this survey, natural occurrence of AlMV, BCMV, BlCMV, BYMV, CMV, PEMV, PeMoV, and TSWV was reported for the first time on soybeans in Iran.


Plant Disease ◽  
2016 ◽  
Vol 100 (4) ◽  
pp. 696-703 ◽  
Author(s):  
L. D. Wells-Hansen ◽  
J. J. Polashock ◽  
N. Vorsa ◽  
B. E. L. Lockhart ◽  
P. S. McManus

Cranberry plants bearing disfigured, scarred fruit were reported by growers in the major cranberry-growing region of central Wisconsin in July 2012. Plants bearing scarred fruit have since been observed in Massachusetts and New Jersey. Three complementary methods provided evidence of Tobacco streak virus (TSV) in symptomatic plants: (i) leaves and scarred berries tested positive for TSV by double-antibody sandwich enzyme-linked immunosorbent assay; (ii) quasi-isometric particles approximately 33 nm in diameter were extracted from leaves of symptomatic plants and visualized using transmission electron microscopy; and (iii) coat protein gene sequence analysis revealed 94 to 99% nucleotide similarity with reference TSV sequences. In newer cultivars, 99% of uprights with scarred berries tested positive for TSV. In older cultivars, 31% of uprights with scarred berries tested positive for TSV and the remaining 69% of uprights with scarred berries tested positive for Blueberry shock virus. TSV overwintered in cranberry plants, and leaves, pollen, and fruit tested positive for TSV the year following symptom occurrence. Attempts to inoculate cranberry using infected pollen or sap as inoculum failed, but several herbaceous hosts tested TSV positive following mechanical inoculation. Phylogenetic analysis of the coat protein gene of 26 TSV isolates from various cultivars of cranberry in Wisconsin, New Jersey, and Massachusetts revealed diversity. This work provides information that will be useful in understanding the epidemiology of TSV in cranberry and in the development of management strategies.


Plant Disease ◽  
2003 ◽  
Vol 87 (11) ◽  
pp. 1396-1396 ◽  
Author(s):  
S. Chander Rao ◽  
R. D. V. J. Prasada Rao ◽  
V. Manoj Kumar ◽  
Divya S. Raman ◽  
M. A. Raoof ◽  
...  

Safflower, Carthamus tinctorius L. (Asteraceae), is extensively cultivated in India, China, and other parts of Asia for edible oil, dyeing agent, and its medicinal value. In 2003, safflower entry (NARI-6) in the All-India Coordinated Research Project on Oilseeds (Safflower) grown in the experimental fields of M/s Syngenta India Ltd., Aurangabad (Maharashtra State, India) exhibited symptoms of veinal and leaf necrosis, necrotic streaks on the stem, necrosis of the terminal bud, and ultimately plant death. The disease was attributed to Tobacco streak virus (TSV) because sunflower growing adjacent to safflower showed similar symptoms caused by TSV (1). Mechanical inoculations of sap from symptomatic safflower leaves caused typical symptoms of TSV (local, irregular, necrotic rings, veinal necrosis, and systemic veinal necrosis) on Vigna unguiculata (L.) Walp. cv. C-152 and Phaseolus vulgaris (L.) cv. Topcrop, and symptoms of local, necrotic lesions, veinal necrosis, and systemic necrosis of leaf and growing bud on Arachis hypogaea L. cv. JL-24. Sap-inoculated safflower cv. Manjeera showed chlorotic and necrotic local lesions followed by systemic leaf necrosis, leading to necrosis and death of the terminal bud. Safflower cvs. A-1, BIP-2, Co-1, and Bheema (10 plants of each cultivar) inoculated with sap from safflower plants showing typical TSV symptoms did not show any visible symptoms except stunting, but six to nine plants of each cultivar tested positive for TSV using enzyme-linked immunosorbent assay (ELISA) tests. In direct antigen coating-ELISA, the virus reacted positively with antiserum produced to an isolate of TSV from peanut (2) and to antiserum to TSV (ATCC-PVAS 276 for Datura stramonium), but did not react to peanut bud necrosis tospovirus antiserum. Examination of leaf extracts using leaf-dips and immunosorbent electron microscopy with the antiserum of TSV-peanut isolate showed isometric particles resembling those in the genus Ilarvirus. To our knowledge, this is the first report of an isolate of Tobacco streak virus infecting safflower. References: (1) R. D. V. J. Prasada Rao et al. J. Oilseeds Res. 17:400, 2000. (2) A. S. Reddy et al. Plant Dis. 86:173, 2002.


Plant Disease ◽  
2009 ◽  
Vol 93 (1) ◽  
pp. 67-72 ◽  
Author(s):  
Hossain Massumi ◽  
Mehdi Shaabanian ◽  
Akbar Hosseini Pour ◽  
Jahangir Heydarnejad ◽  
Heshmetollah Rahimian

A survey was conducted to determine the incidence of Cucumber mosaic virus (CMV), Beet curly top virus (BCTV), Tomato yellow leaf curl virus (TYLCV), Tomato chlorotic spot virus (TcSV), Potato virus Y (PVY), Potato virus S (PVS), Tomato spotted wilt virus (TSWV), Tomato ringspot virus (TRSV), Tomato aspermy virus (TAV), Arabis mosaic virus (ArMV), Tobacco streak virus (TSV), Tomato bushy stunt virus (TBSV), Tobacco mosaic virus (TMV), and Tomato mosaic virus (ToMV) on tomato (Solanum lycopersicum) in the major horticultural crop growing areas in the southeast and central regions of Iran. A total of 1,307 symptomatic leaf samples from fields and 603 samples from greenhouses were collected from January 2003 to July 2005 in five southeastern and central provinces of Iran. Samples of symptomatic plants were analyzed for virus infection by enzyme-linked immunosorbent assay (ELISA) using specific polyclonal antibodies. ArMV and CMV were the most frequently found viruses, accounting for 25.6 and 23.4%, respectively, of the collected samples. BCTV, TSWV, TMV, PVY, ToMV, and TYLCV were detected in 6.1, 5.8, 5.6, 5, 4.8, and 1.6% of the samples, respectively. TBSV, TAV, TSV, PVS, and TRSV were not detected in any of the samples tested. Double and triple infections involving different combination of viruses were found in 13.9 and 1.7% of samples, respectively. This is the first report of PVY and ArMV as viruses naturally infecting tomato in Iran. Infection of tomato plants with PVY and ArMV was confirmed. Six out of 20 plant species belonging to six genera, growing in tomato fields or in the nearby areas, were found infected with TSWV, TMV, PVY, and CMV.


Sign in / Sign up

Export Citation Format

Share Document