scholarly journals The Constitutive Endopolygalacturonase TvPG2 Regulates the Induction of Plant Systemic Resistance by Trichoderma virens

2017 ◽  
Vol 107 (5) ◽  
pp. 537-544 ◽  
Author(s):  
Sabrina Sarrocco ◽  
Fabiola Matarese ◽  
Riccardo Baroncelli ◽  
Giovanni Vannacci ◽  
Verena Seidl-Seiboth ◽  
...  

Trichoderma spp. are opportunistic fungi some of which are commonly present in the rhizosphere. Several species, such as T. virens, are also efficient biocontrol agents against phytopathogenic fungi and exert beneficial effects on plants. These effects are the consequence of interactions between Trichoderma and plant roots, which trigger enhanced plant growth and induce plant resistance. We have previously shown that T. virens I10 expresses two endopolygalacturonase genes, tvpg1 and tvpg2, during the interaction with plant roots; tvpg1 is inducible while tvpg2 is constitutively transcribed. Using the same system, the tomato polygalacturonase-inhibitor gene Lepgip1 was induced at the same time as tvpg1. Here we show by gene disruption that TvPG2 performs a regulatory role on the inducible tvpg1 gene and in triggering the plant immune response. A tvpg2-knockout strain fails to transcribe the inducible tvpg1 gene in neither in vitro in inducing media containing pectin or plant cell walls, nor during the in vivo interaction with tomato roots. Likewise, the in vivo induction of Lepgip1 does not occur, and its defense against the pathogen Botrytis cinerea is significantly reduced. Our data prove the importance of a T. virens constitutively produced endopolygalacturonase in eliciting plant induced systemic resistance against pathogenic fungi.

2016 ◽  
Vol 3 (2) ◽  
pp. 1-8 ◽  
Author(s):  
Milton Luiz da Paz Lima ◽  
Maria Cristina Araújo Vaz ◽  
Aline Suelen da Silva ◽  
Karoliny De Almeida Souza ◽  
Gabriel Isaias Lee Tuñon

The aim of this study was the confrontation of Trichoderma spp. with pathogenic and non-pathogenic fungi. The Trichoderma spp. and filamentous fungi (Fusarium solani, Alternaria sp., Colletotrichum gloeosporioides, and Aspergillus niger) were transferred to potato-dextrose-agar (PDA). The confrontation was performed using Petri dishes inoculated with mycelial disks in opposite position (9 mm) of Trichoderma spp. and filamentous fungi. After inoculation the plates remained under 25 ° C regime to 12 hours light for a period of seven days. After this period was evaluated qualitatively according to the scale of Bell et al. (1982), which consists of the suitability scores for the area percentage of the culture medium under expression of antagonism. The isolate of C. gloeosporioides (jatropha) was isolated which had statistically slightly inhibited growth by Trichoderma spp., Unlike the isolated Alternaria sp. (parsley) was isolated micelial fungi suffered the most antagonism. Statistically the Trichoderma isolate derived from pineapple promoted the highest antagonistic activity against isolates of pathogenic fungi tested, being a candidate for use in biocontrol.


2016 ◽  
Vol 3 (1) ◽  
pp. 28
Author(s):  
Winda Nawfetrias ◽  
Eka Nurhangga ◽  
Sutardjo .

Cocoa black pod rot is caused by pathogenic fungi, Phytophtora palmivora, which decrease the cocoa production up to 90%. The use of biological control agents, Trichoderma spp., is one of the promising P. palmivora controllers since it is low-cost, easily found and safe for the environment. The aims of this research were to understand the compatibility, antagonistic and effectiveness of biofungicide containing active ingredient of Trichoderma spp. against P. palmivora in vitro and to test the effective concentration of biofungicide containing active ingredient of T. asperellum to control P. palmivora in vitro and in vivo. T. asperellum, T. harzianum, and T. viride were grown together on PDA medium to test their compatibility. Antagonistic and effectiveness test of Trichoderma spp. against P. palmivora were tested using the in vitro dual culture method. The effectiveness of T. asperellum biofungicide was tested in vivo on cocoa pot. Compatibility test showed that all three species were compatible and the best effectiveness showed by the combination of T. asperellum and T. viride. The result also showed that T. asperellum biofungicide had an ability to inhibit P. palmivora.   Keywords: Trichoderma spp., effectivity, compatibility, antagonistic, biofungicide  ABSTRAKPenyakit busuk buah kakao disebabkan cendawan patogen Phytophtora palmivora, yang dapat menurunkan produksi kakao sampai 90%. Penggunaan agensia pengendali hayati (APH), Trichoderma spp., merupakan salah satu pengendalian P. palmivora yang menjanjikan karena murah, mudah didapat dan aman terhadap lingkungan. Penelitian ini bertujuan mengetahui kesesuaian, antagonistik, dan efektivitas biofungisida berbahan aktif Trichoderma spp. secara in vitro. Di samping itu juga bertujuan mengetahui konsentrasi efektif biofungisida berbahan aktif T. asperellum untuk mengendalikan P. palmivora secara in vitro dan in vivo. T. asperellum, T. harzianum, dan T. viride, ditumbuhkan bersama pada media PDA untuk mengetahui kesesuaian antarspesies. Antagonistik dan efektivitas Trichoderma spp. terhadap P. palmivora secara in vitro diuji menggunakan metode dual culture. Biofungisida berbahan aktif T. asperellum diuji efektivitasnya secara in vivo pada buah kakao. Hasil uji kesesuaian menunjukkan bahwa ketiga spesies yang diuji berkesesuaian dan efektifitas terbaik ditunjukkan pada kombinasi T. asperellum dan T. viride. Hasil penelitian juga menunjukkan bahwa biofungisida berbahan aktif T. asperellum dengan konsentrasi tertinggi terbukti dapat menghambat pertumbuhan P. palmivora.Kata kunci: Trichoderma spp., efektivitas, kesesuaian, antagonis, biofungisida


2021 ◽  
Vol 12 ◽  
Author(s):  
Jun Chen ◽  
Liuting Zhou ◽  
Israr Ud Din ◽  
Yasir Arafat ◽  
Qian Li ◽  
...  

Under consecutive monoculture, the abundance of pathogenic fungi, such as Fusarium oxysporum in the rhizosphere of Radix pseudostellariae, negatively affects the yield and quality of the plant. Therefore, it is pertinent to explore the role of antagonistic fungi for the management of fungal pathogens such as F. oxysporum. Our PCR-denatured gradient gel electrophoresis (DGGE) results revealed that the diversity of Trichoderma spp. was significantly declined due to extended monoculture. Similarly, quantitative PCR analysis showed a decline in Trichoderma spp., whereas a significant increase was observed in F. oxysporum. Furthermore, seven Trichoderma isolates from the R. pseudostellariae rhizosphere were identified and evaluated in vitro for their potentiality to antagonize F. oxysporum. The highest and lowest percentage of inhibition (PI) observed among these isolates were 47.91 and 16.67%, respectively. In in vivo assays, the R. pseudostellariae treated with four Trichoderma isolates, having PI > 30%, was used to evaluate the biocontrol efficiency against F. oxysporum in which T. harzianum ZC51 enhanced the growth of the plant without displaying any disease symptoms. Furthermore, the expression of eight defense-related genes of R. pseudostellariae in response to a combination of F. oxysporum and T. harzianum ZC51 treatment was checked, and most of these defense genes were found to be upregulated. In conclusion, this study reveals that the extended monoculture of R. pseudostellariae could alter the Trichoderma communities in the plant rhizosphere leading to relatively low level of antagonistic microorganisms. However, T. harzianum ZC51 could inhibit the pathogenic F. oxysporum and induce the expression of R. pseudostellariae defense genes. Hence, T. harzianum ZC51 improves the plant resistance and reduces the growth inhibitory effect of consecutive monoculture problem.


2020 ◽  
Vol 55 (1) ◽  
pp. 27-34
Author(s):  
G. Zadehdabagh ◽  
K. Karimi ◽  
M. Rezabaigi ◽  
F. Ajamgard

The northern of Khuzestan province in Iran is mainly considered as one of the major areas of miniature rose production. Blossom blight caused by Botrytis cinerea has recently become a serious limiting factor in rose production in pre and post-harvest. In current study, an attempt was made to evaluate the inhibitory potential of some local Trichoderma spp. strains against B. cinerea under in vitro and in vivo conditions. The in vitro results showed that all Trichoderma spp. strains were significantly able to reduce the mycelial growth of the pathogen in dual culture, volatile and non-volatile compounds tests compared with control, with superiority of T. atroviride Tsafi than others. Under in vivo condition, the selected strain of T. atroviride Tsafi had much better performance than T. harzianum IRAN 523C in reduction of disease severity compared with the untreated control. Overall, the findings of this study showed that the application of Trichoderma-based biocontrol agents such as T. atroviride Tsafi can be effective to protect cut rose flowers against blossom blight.


2018 ◽  
Vol 15 (6) ◽  
pp. 531-543 ◽  
Author(s):  
Dominik Szwajgier ◽  
Ewa Baranowska-Wojcik ◽  
Kamila Borowiec

Numerous authors have provided evidence regarding the beneficial effects of phenolic acids and their derivatives against Alzheimer's disease (AD). In this review, the role of phenolic acids as inhibitors of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) is discussed, including the structure-activity relationship. In addition, the inhibitory effect of phenolic acids on the formation of amyloid β-peptide (Aβ) fibrils is presented. We also cover the in vitro, ex vivo, and in vivo studies concerning the prevention and treatment of the cognitive enhancement.


Antioxidants ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 507
Author(s):  
Rosaria Meccariello ◽  
Stefania D’Angelo

Aging and, particularly, the onset of age-related diseases are associated with tissue dysfunction and macromolecular damage, some of which can be attributed to accumulation of oxidative damage. Recently, growing interest has emerged on the beneficial effects of plant-based diets for the prevention of chronic diseases including obesity, diabetes, and cardiovascular disease. Several studies collectively suggests that the intake of polyphenols and their major food sources may exert beneficial effects on improving insulin resistance and related diabetes risk factors, such as inflammation and oxidative stress. They are the most abundant antioxidants in the diet, and their intake has been associated with a reduced aging in humans. Polyphenolic intake has been shown to be effective at ameliorating several age-related phenotypes, including oxidative stress, inflammation, impaired proteostasis, and cellular senescence, both in vitro and in vivo. In this paper, effects of these phytochemicals (either pure forms or polyphenolic-food) are reviewed and summarized according to affected cellular signaling pathways. Finally, the effectiveness of the anti-aging preventive action of nutritional interventions based on diets rich in polyphenolic food, such as the diets of the Blue zones, are discussed.


Processes ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 454 ◽  
Author(s):  
Marko Dachev ◽  
Jana Bryndová ◽  
Milan Jakubek ◽  
Zdeněk Moučka ◽  
Marian Urban

Conjugated linoleic acids (CLA) are distinctive polyunsaturated fatty acids. They are present in food produced by ruminant animals and they are accumulated in seeds of certain plants. These naturally occurring substances have demonstrated to have anti-carcinogenic activity. Their potential effect to inhibit cancer has been shown in vivo and in vitro studies. In this review, we present the multiple effects of CLA isomers on cancer development such as anti-tumor efficiency, anti-mutagenic and anti-oxidant activity. Although the majority of the studies in vivo and in vitro summarized in this review have demonstrated beneficial effects of CLA on the proliferation and apoptosis of tumor cells, further experimental work is needed to estimate the true value of CLA as a real anti-cancer agent.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
N. Callizot ◽  
C. Estrella ◽  
S. Burlet ◽  
A. Henriques ◽  
C. Brantis ◽  
...  

AbstractProgranulin (PGRN) is a protein with multiple functions including the regulation of neuroinflammation, neuronal survival, neurite and synapsis growth. Although the mechanisms of action of PGRN are currently unknown, its potential therapeutic application in treating neurodegenerative diseases is huge. Thus, strategies to increase PGRN levels in patients could provide an effective treatment. In the present study, we investigated the effects of AZP2006, a lysotropic molecule now in phase 2a clinical trial in Progressive Supranuclear Palsy patients, for its ability to increase PGRN level and promote neuroprotection. We showed for the first time the in vitro and in vivo neuroprotective effects of AZP2006 in neurons injured with Aβ1–42 and in two different pathological animal models of Alzheimer’s disease (AD) and aging. Thus, the chronic treatment with AZP2006 was shown to reduce the loss of central synapses and neurons but also to dramatically decrease the massive neuroinflammation associated with the animal pathology. A deeper investigation showed that the beneficial effects of AZP2006 were associated with PGRN production. Also, AZP2006 binds to PSAP (the cofactor of PGRN) and inhibits TLR9 receptors normally responsible for proinflammation when activated. Altogether, these results showed the high potential of AZP2006 as a new putative treatment for AD and related diseases.


2021 ◽  
Vol 14 (4) ◽  
pp. 336
Author(s):  
Annalisa Noce ◽  
Maria Albanese ◽  
Giulia Marrone ◽  
Manuela Di Lauro ◽  
Anna Pietroboni Zaitseva ◽  
...  

The Coronavirus Disease-19 (COVID-19) pandemic has caused more than 100,000,000 cases of coronavirus infection in the world in just a year, of which there were 2 million deaths. Its clinical picture is characterized by pulmonary involvement that culminates, in the most severe cases, in acute respiratory distress syndrome (ARDS). However, COVID-19 affects other organs and systems, including cardiovascular, urinary, gastrointestinal, and nervous systems. Currently, unique-drug therapy is not supported by international guidelines. In this context, it is important to resort to adjuvant therapies in combination with traditional pharmacological treatments. Among natural bioactive compounds, palmitoylethanolamide (PEA) seems to have potentially beneficial effects. In fact, the Food and Drug Administration (FDA) authorized an ongoing clinical trial with ultramicronized (um)-PEA as an add-on therapy in the treatment of Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) infection. In support of this hypothesis, in vitro and in vivo studies have highlighted the immunomodulatory, anti-inflammatory, neuroprotective and pain-relieving effects of PEA, especially in its um form. The purpose of this review is to highlight the potential use of um-PEA as an adjuvant treatment in SARS-CoV-2 infection.


Sign in / Sign up

Export Citation Format

Share Document