scholarly journals Performance of the Biocontrol Fungus Piriformospora indica on Wheat Under Greenhouse and Field Conditions

2007 ◽  
Vol 97 (4) ◽  
pp. 523-531 ◽  
Author(s):  
Albrecht Serfling ◽  
Stefan G. R. Wirsel ◽  
Volker Lind ◽  
Holger B. Deising

The endophyte Piriformospora indica colonizes roots of a range of host plants and increases biomass production and resistance to fungal pathogens and, thus has been considered a biocontrol fungus. However, the field performance of this fungus has not yet been tested in temperate climates. Therefore, we evaluated the performance of this fungus in different substrata under greenhouse and practical field conditions. Roots of winter wheat were colonized efficiently, and biomass was particularly increased on poor substrata. In greenhouse experiments, symptom severity of a typical leaf (Blumeria graminis f. sp. tritici), stem base (Pseudocercosporella herpotrichoides), and root (Fusarium culmorum) pathogen was reduced significantly. However, in field experiments, symptoms caused by the leaf pathogen did not differ in Piriformospora indica-colonized compared with control plants. In the field, Pseudocercosporella herpotrichoides disease severity was significantly reduced in plants colonized by the endophyte. Increased numbers of sheath layers and hydrogen peroxide concentrations after B. graminis attack were detected in Piriformospora indica-colonized plants, suggesting that root colonization causes induction of systemic resistance or priming of the host plant. Although the endophyte is not well suited for growth at Central European temperature conditions, it remains to be shown whether P. indica is more suitable for tropical or subtropical farming.

2011 ◽  
Vol 24 (12) ◽  
pp. 1427-1439 ◽  
Author(s):  
Alexandra Molitor ◽  
Doreen Zajic ◽  
Lars M. Voll ◽  
Jörn Pons-Kühnemann ◽  
Birgit Samans ◽  
...  

Colonization of barley roots with the basidiomycete fungus Piriformospora indica (Sebacinales) induces systemic resistance against the biotrophic leaf pathogen Blumeria graminis f. sp. hordei (B. graminis). To identify genes involved in this mycorrhiza-induced systemic resistance, we compared the leaf transcriptome of P. indica-colonized and noncolonized barley plants 12, 24, and 96 h after challenge with a virulent race of B. graminis. The leaf pathogen induced specific gene sets (e.g., LRR receptor kinases and WRKY transcription factors) at 12 h postinoculation (hpi) (prepenetration phase) and vesicle-localized gene products 24 hpi (haustorium establishment). Metabolic analysis revealed a progressing shift of steady state contents of the intermediates glucose-1-phosphate, uridinediphosphate-glucose, and phosphoenolpyruvate 24 and 96 hpi, indicating that B. graminis shifts central carbohydrate metabolism in favor of sucrose biosynthesis. Both B. graminis and P. indica increased glutamine and alanine contents, whereas substrates for starch and nitrogen assimilation (adenosinediphosphate- glucose and oxoglutarate) decreased. In plants that were more B. graminis resistant due to P. indica root colonization, 22 transcripts, including those of pathogenesis-related genes and genes encoding heat-shock proteins, were differentially expressed ≥twofold in leaves after B. graminis inoculation compared with non-mycorrhized plants. Detailed expression analysis revealed a faster induction after B. graminis inoculation between 8 and 16 hpi, suggesting that priming of these genes is an important mechanism of P. indica-induced systemic disease resistance.


Weed Science ◽  
1979 ◽  
Vol 27 (5) ◽  
pp. 497-501 ◽  
Author(s):  
C. D. Boyette ◽  
G. E. Templeton ◽  
R. J. Smith

An indigenous, host-specific, pathogenic fungus that parasitizes winged waterprimrose [Jussiaea decurrens(Walt.) DC.] is endemic in the rice growing region of Arkansas. The fungus was isolated and identified asColletotrichum gloeosporioides(Penz.) Sacc. f.sp. jussiaeae(CGJ). It is highly specific for parasitism of winged waterprimrose and not parasitic on creeping waterprimrose (J. repensL. var.glabrescensKtze.), rice (Oryza sativaL.), soybeans [Glycine max(L.) Merr.], cotton (Gossypium hirsutumL.), or 4 other crops and 13 other weeds. The fungus was physiologically distinct from C.gloeosporioides(Penz.) Sacc. f. sp.aeschynomene(CGA), an endemic anthracnose pathogen of northern jointvetch[Aeschynomene virginica(L.) B.S.P.], as indicated by cross inoculations of both weeds. Culture in the laboratory and inoculation of winged waterprimrose in greenhouse, growth chamber and field experiments indicated that the pathogen was stable, specific, and virulent in a wide range of environments. The pathogen yielded large quantities of spores in liquid culture. It is suitable for control of winged waterprimrose. Winged waterprimrose and northern jointvetch were controlled in greenhouse and field tests by application of spore mixtures of CGJ and CGA at concentrations of 1 to 2 million spores/ml of each fungus in 94 L/ha of water; the fungi did not damage rice or nontarget crops.


Plants ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 349
Author(s):  
Dominik Bleša ◽  
Pavel Matušinský ◽  
Romana Sedmíková ◽  
Milan Baláž

The use of biological control is becoming a common practice in plant production. One overlooked group of organisms potentially suitable for biological control are Rhizoctonia-like (Rh-like) fungi. Some of them are capable of forming endophytic associations with a large group of higher plants as well as mycorrhizal symbioses. Various benefits of endophytic associations were proved, including amelioration of devastating effects of pathogens such as Fusarium culmorum. The advantage of Rh-like endophytes over strictly biotrophic mycorrhizal organisms is the possibility of their cultivation on organic substrates, which makes their use more suitable for production. We focused on abilities of five Rh-like fungi isolated from orchid mycorrhizas, endophytic fungi Serendipita indica, Microdochium bolleyi and pathogenic Ceratobasidium cereale to inhibit the growth of pathogenic F. culmorum or Pyrenophora teres in vitro. We also analysed their suppressive effect on wheat infection by F. culmorum in a growth chamber, as well as an effect on barley under field conditions. Some of the Rh-like fungi affected the growth of plant pathogens in vitro, then the interaction with plants was tested. Beneficial effect was especially noted in the pot experiments, where wheat plants were negatively influenced by F. culmorum. Inoculation with S. indica caused higher dry shoot biomass in comparison to plants treated with fungicide. Prospective for future work are the effects of these endophytes on plant signalling pathways, factors affecting the level of colonization and surviving of infectious particles.


Plants ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 789
Author(s):  
Klára Kosová ◽  
Miroslav Klíma ◽  
Ilja Tom Prášil ◽  
Pavel Vítámvás

Low temperatures in the autumn induce enhanced expression/relative accumulation of several cold-inducible transcripts/proteins with protective functions from Late-embryogenesis-abundant (LEA) superfamily including dehydrins. Several studies dealing with plants grown under controlled conditions revealed a correlation (significant quantitative relationship) between dehydrin transcript/protein relative accumulation and plant frost tolerance. However, to apply these results in breeding, field experiments are necessary. The aim of the review is to provide a summary of the studies dealing with the relationships between plant acquired frost tolerance and COR/LEA transcripts/proteins relative accumulation in cereals grown in controlled and field conditions. The impacts of cold acclimation and vernalisation processes on the ability of winter-type Triticeae to accumulate COR/LEA proteins are discussed. The factors determining dehydrin relative accumulation under controlled cold acclimation treatments versus field trials during winter seasons are discussed. In conclusion, it can be stated that dehydrins could be used as suitable indicators of winter survival in field-grown winter cereals but only in plant prior to the fulfilment of vernalisation requirement.


2021 ◽  
Vol 16 (1) ◽  
pp. 172-183
Author(s):  
Agnieszka Tomkowiak ◽  
Roksana Skowrońska ◽  
Michał Kwiatek ◽  
Julia Spychała ◽  
Dorota Weigt ◽  
...  

Abstract Leaf rust caused by the fungus Puccinia recondita f. sp. tritici is one of the most dangerous diseases of common wheat. Infections caused by fungal pathogens reduce the quantity and quality of yields of many cereal species. The most effective method to limit plant infection is to use cultivars that show rust resistance. Genetically conditioned horizontal-type resistance (racial-nonspecific) is a desirable trait because it is characterized by more stable expression compared to major (R) genes that induce racially specific resistance, often overcome by pathogens. Horizontal resistance is conditioned by the presence of slow rust genes, which include genes Lr34 and Lr46. This study aimed to identify markers linked to both genes in 64 common wheat lines and to develop multiplex PCR reaction conditions that were applied to identify both genes simultaneously. The degree of infestation of the analyzed lines was also assessed in field conditions during the growing season of 2017 and 2018. Simple sequence repeat anchored-polymerase chain reaction (SSR-PCR) marker csLV was identified during analysis in line PHR 4947. The presence of a specific sequence has also been confirmed in multiplex PCR analyses. In addition to gene Lr34, gene Lr46 was identified in this genotype. Lines PHR 4947 and PHR 4819 were characterized by the highest leaf rust resistance in field conditions. During STS-PCR analyses, the marker wmc44 of gene Lr46 was identified in most of the analyzed lines. This marker was not present in the following genotypes: PHR 4670, PHR 4800, PHR 4859, PHR 4907, PHR 4922, PHR 4949, PHR 4957, PHR 4995, and PHR 4997. The presence of a specific sequence has also been confirmed in multiplex PCR analyses. Genotypes carrying the markers of the analyzed gene showed good resistance to leaf rust in field conditions in both 2017 and 2018. Research has demonstrated that marker assisted selection (MAS) and multiplex PCR techniques are excellent tools for selecting genotypes resistant to leaf rust.


1975 ◽  
Vol 107 (9) ◽  
pp. 967-977 ◽  
Author(s):  
C. J. Sanders

AbstractLaboratory and field experiments indicate that the female spruce budworm (Choristoneura fumiferana (Clem.)) pupal stadium requires approximately 122C degree-days above a threshold of 7.2 °C (45°F), the male 124. Emergence time on any given day depends on temperature but is independent of photoperiod. Under field conditions male and female budworm mate only once per 24-h period. In the laboratory under continuous illumination females mate repeatedly and males readily mate a second time within a few hours, but the duration of the second copulation is abnormally long. The probability of multiple matings under field conditions is reduced by the restricted period of sexual activity coupled with the duration of copulation and the lower competitiveness of mated insects. Antennae are essential to the male for successful copulation.


Plant Disease ◽  
1997 ◽  
Vol 81 (7) ◽  
pp. 753-756 ◽  
Author(s):  
S. Sanogo ◽  
S. P. Pennypacker ◽  
R. E. Stevenson ◽  
A. A. MacNab

Field experiments were conducted to determine the relationship of tomato anthracnose to weather variables. Sixteen potted tomato plants were exposed to field conditions within rows of tomato plants for 4 consecutive days at various time periods during the 1993 and 1994 summer growing seasons. Incidence of fruit infection by Colletotrichum coccodes was correlated with rain variables (amount and duration of rain) alone and in combination with other meteorological factors. The best fitting regression equation, accounting for 72% of the variation in anthracnose incidence (arcsine-square root transformed), was Y = 111.77 - 1.16 HNRo, in which HNRo is the numbers of hours during which no rainfall occurs within 4-day intervals that tomato fruit were exposed to field conditions in central Pennsylvania.


2019 ◽  
Vol 65 (1) ◽  
pp. 17-22
Author(s):  
Ivana Políšenská ◽  
Kateřina Vaculová ◽  
Ondřej Jirsa ◽  
Irena Sedláčková ◽  
Jan Frydrych

The effect of F. culmorum inoculation on the yield and quality of grain of AF Cesar and AF Lucius barley varieties was monitored. Field experiments were conducted between 2015-2017 at two locations. In grain harvested from plots grown under natural infection conditions, the deoxynivalenol content was very low. Inoculation caused a decline in germination, a certain reduction in yield and a change in some qualitative parameters (reduction in protein and fiber content, increase in starch content), but the effect of inoculation was weak and significantly influenced by the environment and the variety. The β-glucan content was not affected by inoculation. The varieties differed significantly from each other in β-glucan content (AF Cesar > AF Lucius). The deoxynivalenol content of both varieties was comparable after the inoculation while it differed under conditions of the natural infection (AF Cesar < AF Lucius).


Author(s):  
Ovidiu RANTA ◽  
Ioan DROCAS ◽  
Sorin STANILA ◽  
Adrian MOLNAR ◽  
Mircea Valentin MUNTEAN ◽  
...  

Autors was designed a system to modify the SPC romanian seeding machine for in order that it can be used for no-till technology. This machine was manufactured with the help of S.C. MECANICA M.A.R.I..U.S. S.A. in Cluj- Napoca and it was used in laboratory conditions in a state of the art soil bin of Hohenheim University, Stuttgart and in laboratory-field conditions. The field experiments were located on a plot of Experimental Teaching Facility of USAMV Cluj-Napoca, on aluviosol molic soil after SRTS – 200, in location Lunca Someşului Mic (Podişul Someşan) .


Plant Disease ◽  
2021 ◽  
Author(s):  
Albert Culbreath ◽  
Robert Kemerait ◽  
Timothy Brenneman ◽  
Emily Cantonwine ◽  
Keith Rucker

In peanut (Arachis hypogaea) production, in-furrow applications of the pre-mix combination of the SDHI fungicide/nematicide, fluopyram, and the insecticide, imidacloprid are used primarily for management of nematode pests and for preventing feeding damage on foliage caused by tobacco thrips (Frankliniella fusca). Fluopyram is also active against many fungal pathogens. However, the effect of in-furrow applications of fluopyram on early leaf spot (Passalora arachidicola) or late leaf spot (Nothopassalora personata) has not been characterized. The purpose of this study was to determine the effects of in-furrow applications of fluopyram + imidacloprid or fluopyram alone on leaf spot epidemics. Field experiments were conducted in Tifton, GA in 2015, 2016, and 2018-2020. In all experiments in-furrow applications of fluopyram + imidacloprid provided extended suppression of early leaf spot and late leaf spot epidemics compared to the nontreated control. In 2020, there was no difference between the effects of fluopyram + imidacloprid and fluopyram alone on leaf spot epidemics. Results indicated that fluopyram could complement early season leaf spot management programs. Use of in-furrow applications of fluopyram should be considered as an SDHI fungicide application for resistance management purposes.


Sign in / Sign up

Export Citation Format

Share Document