scholarly journals Butyrate Reduces TNFα‐Induced Cell Toxicity in Rat Colonic Epithelium

2021 ◽  
Vol 35 (S1) ◽  
Author(s):  
Christopher Souders ◽  
Jasenka Zubcevic ◽  
Christopher Martyniuk
Author(s):  
G. I. Kaye ◽  
J. D. Cole

For a number of years we have used an adaptation of Komnick's KSb(OH)6-OsO4 fixation method for the localization of sodium in tissues in order to study transporting epithelia under a number of different conditions. We have shown that in actively transporting rabbit gallbladder epithelium, large quantities of NaSb(OH)6 precipitate are found in the distended intercellular compartment, while localization of precipitate is confined to the inner side of the lateral plasma membrane in inactive gallbladder epithelium. A similar pattern of distribution of precipitate has been demonstrated in human and rabbit colon in active and inactive states and in the inactive colonic epithelium of hibernating frogs.


2001 ◽  
Vol 8 (4) ◽  
pp. 281-288 ◽  
Author(s):  
Song Shin ◽  
Sung Yang ◽  
Soo Eom ◽  
Woo Song ◽  
Yangmee Kim ◽  
...  

2014 ◽  
Vol 21 (26) ◽  
pp. 3081-3094 ◽  
Author(s):  
M. Ashfaq ◽  
T. Najam ◽  
S.S.A. Shah ◽  
M.M. Ahmad ◽  
S. Shaheen ◽  
...  

2017 ◽  
Vol 14 (8) ◽  
Author(s):  
Mahboubeh Rezazadeh ◽  
Jaber Emami ◽  
Farshid Hassanzadeh ◽  
Hojjat Sadeghi ◽  
Mahboubeh Rostami ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Fariba Abbasi ◽  
Hassan Hashemi ◽  
Mohammad Reza Samaei ◽  
Amir SavarDashtaki ◽  
Abooalfazl Azhdarpoor ◽  
...  

AbstractThe 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay is the most common method for the determination of cell toxicity, but some factors limit the sensitivity of this method, such as pH. Less attention had been paid to the interference effect of optical and plasmonic properties of SiO2 nanoparticles (NPs) in the wavelength range assigned to MTT. This study investigated the synergistic interference effect of SiO2 NPs and wavelength on MTT assay for the first time. The examined variables included the type of SiO2 NPs concentrations (1, 10, and 100 mM) and different wavelengths (470, 490, 520, and 570 nm). The results showed that optical density (OD) increased (p < 0.05) when wavelength and the concentration of crystalline SiO2 NPs increased. So, the maximum OD at 10 and 100 mM were attributed to crystalline SiO2 NPs (p < 0.05) due to the functional group, whereas it was related to amorphous at 1 mM (p > 0.05). According to polynomial regression modeling (PRM), the maximum interference effect was predicted at crystalline SiO2 NPs and wavelength > 550 nm. Besides, the synergistic effects of SiO2 NPs, wavelength, and concentration of NPs had been a good fitting with first-order PRM. Thus, the concentration of SiO2 NPs had a confounder factor in colorimetric for MTT assay. The best artificial neural network (ANN) structure was related to the 3:7:1 network (Rall = 0.936, MSE = 0.0006, MAPE = 0.063). The correlation between the actual and predicted data was 0.88. As SiO2 NPs presence is an interfering factor in MTT assay concerning wavelength, it is suggested wavelength use with minimum confounding effect for MTT assay.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Nieves Martínez-Peinado ◽  
Nuria Cortes-Serra ◽  
Luciana R. Tallini ◽  
Maria-Jesus Pinazo ◽  
Joaquim Gascon ◽  
...  

Abstract Background Chagas disease is a neglected zoonosis caused by the parasite Trypanosoma cruzi. It affects over six million people, mostly in Latin America. Drugs available to treat T. cruzi infection have associated toxicity and questionable efficacy at the chronic stage. Hence, the discovery of more effective and safer drugs is an unmet medical need. For this, natural products represent a pool of unique chemical diversity that can serve as excellent templates for the synthesis of active molecules. Methods A collection of 79 extracts of Amaryllidaceae plants were screened against T. cruzi. Active extracts against the parasite were progressed through two cell toxicity assays based on Vero and HepG2 cells to determine their selectivity profile and discard those toxic to host cells. Anti-T. cruzi-specific extracts were further qualified by an anti-amastigote stage assay. Results Two extracts, respectively from Crinum erubescens and Rhodophiala andicola, were identified as highly active and specific against T. cruzi and its mammalian replicative form. Conclusions The results retrieved in this study encourage further exploration of the chemical content of these extracts in search of new anti-T. cruzi drug development starting points. Graphic abstract


Cancers ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 750
Author(s):  
Werner E. G. Müller ◽  
Meik Neufurth ◽  
Shunfeng Wang ◽  
Heinz C. Schröder ◽  
Xiaohong Wang

The anti-cancer antitumor antibiotic bleomycin(s) (BLM) induces athyminic sites in DNA after its activation, a process that results in strand splitting. Here, using A549 human lung cells or BEAS-2B cells lunc cells, we show that the cell toxicity of BLM can be suppressed by addition of inorganic polyphosphate (polyP), a physiological polymer that accumulates and is released from platelets. BLM at a concentration of 20 µg ml−1 causes a decrease in cell viability (by ~70%), accompanied by an increased DNA damage and chromatin expansion (by amazingly 6-fold). Importantly, the BLM-caused effects on cell growth and DNA integrity are substantially suppressed by polyP. In parallel, the enlargement of the nuclei/chromatin in BLM-treated cells (diameter, 20–25 µm) is normalized to ~12 µm after co-incubation of the cells with BLM and polyP. A sequential application of the drugs (BLM for 3 days, followed by an exposure to polyP) does not cause this normalization. During co-incubation of BLM with polyP the gene for the BLM hydrolase is upregulated. It is concluded that by upregulating this enzyme polyP prevents the toxic side effects of BLM. These data might also contribute to an application of BLM in COVID-19 patients, since polyP inhibits binding of SARS-CoV-2 to cellular ACE2.


2007 ◽  
Vol 210 (3) ◽  
pp. 740-749 ◽  
Author(s):  
Jeffrey W. Keller ◽  
Jeffrey L. Franklin ◽  
Ramona Graves-Deal ◽  
David B. Friedman ◽  
Corbin W. Whitwell ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document