scholarly journals Anti‐inflammatory and metabolic mechanisms by which omega‐3 fatty acids improve insulin resistance in high fat diet‐induced obese mice

2010 ◽  
Vol 24 (S1) ◽  
Author(s):  
Nishan Sudheera Kalupahana ◽  
Kate Claycombe ◽  
Taryn Stewart ◽  
Rachael Hadidsaz ◽  
Suzanne Booker ◽  
...  
Nutrients ◽  
2019 ◽  
Vol 11 (4) ◽  
pp. 835 ◽  
Author(s):  
Chacińska ◽  
Zabielski ◽  
Książek ◽  
Szałaj ◽  
Jarząbek ◽  
...  

It has been established that OMEGA-3 polyunsaturated fatty acids (PUFAs) may improve lipid and glucose homeostasis and prevent the “low-grade” state of inflammation in animals. Little is known about the effect of PUFAs on adipocytokines expression and biologically active lipids accumulation under the influence of high-fat diet-induced obesity. The aim of the study was to examine the effect of fish oil supplementation on adipocytokines expression and ceramide (Cer) and diacylglycerols (DAG) content in visceral and subcutaneous adipose tissue of high-fat fed animals. The experiments were carried out on Wistar rats divided into three groups: standard diet–control (SD), high-fat diet (HFD), and high-fat diet + fish oil (HFD+FO). The fasting plasma glucose and insulin concentrations were examined. Expression of carnitine palmitoyltransferase 1 (CPT1) protein was determined using the Western blot method. Plasma adipocytokines concentration was measured using ELISA kits and mRNA expression was determined by qRT-PCR reaction. Cer, DAG, and acyl-carnitine (A-CAR) content was analyzed by UHPLC/MS/MS. The fish oil supplementation significantly decreased plasma insulin concentration and Homeostatic Model Assesment for Insulin Resistance (HOMA-IR) index and reduced content of adipose tissue biologically active lipids in comparison with HFD-fed subjects. The expression of CPT1 protein in HFD+FO in both adipose tissues was elevated, whereas the content of A-CAR was lower in both HFD groups. There was an increase of adiponectin concentration and expression in HFD+FO as compared to HFD group. OMEGA-3 fatty acids supplementation improved insulin sensitivity and decreased content of Cer and DAG in both fat depots. Our results also demonstrate that PUFAs may prevent the development of insulin resistance in response to high-fat feeding and may regulate the expression and secretion of adipocytokines in this animal model.


2020 ◽  
Vol 11 (4) ◽  
pp. 347-359
Author(s):  
D. Valent ◽  
L. Arroyo ◽  
E. Fàbrega ◽  
M. Font-i-Furnols ◽  
M. Rodríguez-Palmero ◽  
...  

The pig is a valuable animal model to study obesity in humans due to the physiological similarity between humans and pigs in terms of digestive and associated metabolic processes. The dietary use of vegetal protein, probiotics and omega-3 fatty acids is recommended to control weight gain and to fight obesity-associated metabolic disorders. Likewise, there are recent reports on their beneficial effects on brain functions. The hypothalamus is the central part of the brain that regulates food intake by means of the production of food intake-regulatory hypothalamic neuropeptides, as neuropeptide Y (NPY), orexin A and pro-opiomelanocortin (POMC), and neurotransmitters, such as dopamine and serotonin. Other mesolimbic areas, such as the hippocampus, are also involved in the control of food intake. In this study, the effect of a high fat diet (HFD) alone or supplemented with these additives on brain neuropeptides and neurotransmitters was assessed in forty-three young pigs fed for 10 weeks with a control diet (T1), a high fat diet (HFD, T2), and HFD with vegetal protein supplemented with Bifidobacterium breve CECT8242 alone (T3) or in combination with omega-3 fatty acids (T4). A HFD provoked changes in regulatory neuropeptides and 3,4-dihydroxyphenylacetic acid (DOPAC) in the hypothalamus and alterations mostly in the dopaminergic system in the ventral hippocampus. Supplementation of the HFD with B. breve CECT8242, especially in combination with omega-3 fatty acids, was able to partially reverse the effects of HFD. Correlations between productive and neurochemical parameters supported these findings. These results confirm that pigs are an appropriate animal model alternative to rodents for the study of the effects of HFD on weight gain and obesity. Furthermore, they indicate the potential benefits of probiotics and omega-3 fatty acids on brain function.


Molecules ◽  
2020 ◽  
Vol 25 (14) ◽  
pp. 3289
Author(s):  
Alejandra Espinosa ◽  
Andrés Ross ◽  
Gretel Dovale-Rosabal ◽  
Francisco Pino-de la Fuente ◽  
Ernesto Uribe-Oporto ◽  
...  

Dietary intake of eicosapentaenoic/docosahexaenoic acid (EPA/DHA) reduces insulin resistance and hepatic manifestations through the regulation of metabolism in the liver. Obese mice present insulin resistance and lipid accumulation in intracellular lipid droplets (LDs). LD-associated proteins perilipin (Plin) have an essential role in both adipogenesis and lipolysis; Plin5 regulates lipolysis and thus contributes to fat oxidation. The purpose of this study was to compare the effects of deodorized refined salmon oil (DSO) and its polyunsaturated fatty acids concentrate (CPUFA) containing EPA and DHA, obtained by complexing with urea, on obesity-induced metabolic alteration. CPUFA maximum content was determined using the Box–Behnken experimental design based on Surface Response Methodology. The optimized CPUFA was administered to high-fat diet (HFD)-fed mice (200 mg/kg/day of EPA + DHA) for 8 weeks. No significant differences (p > 0.05) in cholesterol, glycemia, LDs or transaminase content were found. Fasting insulin and hepatic Plin5 protein level increased in the group supplemented with the EPA + DHA optimized product (38.35 g/100 g total fatty acids) compared to obese mice without fish oil supplementation. The results suggest that processing salmon oil by urea concentration can generate an EPA+DHA dose useful to prevent the increase of fasting insulin and the decrease of Plin5 in the liver of insulin-resistant mice.


PLoS ONE ◽  
2013 ◽  
Vol 8 (4) ◽  
pp. e61109 ◽  
Author(s):  
Fatima Kasbi Chadli ◽  
Hassane Nazih ◽  
Michel Krempf ◽  
Patrick Nguyen ◽  
Khadija Ouguerram

2017 ◽  
Vol 102 (11) ◽  
pp. 1500-1512 ◽  
Author(s):  
Sang-Rok Lee ◽  
Andy V. Khamoui ◽  
Edward Jo ◽  
Michael C. Zourdos ◽  
Lynn B. Panton ◽  
...  

Nutrients ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 3652
Author(s):  
Suresh Khadke ◽  
Pallavi Mandave ◽  
Aniket Kuvalekar ◽  
Vijaya Pandit ◽  
Manjiri Karandikar ◽  
...  

Type 2 diabetes mellitus, which an outcome of impaired insulin action and its secretion, is concomitantly associated with lipid abnormalities. The study was designed to evaluate the combinational effect of omega-3 fatty acids (flax and fish oil) and glibenclamide on abnormal lipid profiles, increased blood glucose, and impaired liver and kidney functions in a high fat diet with low streptozotocin (STZ)-induced diabetic rats, including its probable mechanism of action. The male Wistar rats (n = 48) were distributed into eight groups. All animal groups except the healthy received a high fat diet (HFD) for 90 days. Further, diabetes was developed by low dose STZ (35 mg/kg). Diabetic animals received, omega-3 fatty acids (500 mg/kg), along with glibenclamide (0.25 mg/kg). Both flax and fish oil intervention decreased (p ≤ 0.001) serum triglycerides and very low density lipoprotein and elevated (p ≤ 0.001) high density lipoprotein levels in diabetic rats. Total cholesterol and low-density lipoprotein level was decreased (p ≤ 0.001) in fish oil-treated rats. However, it remained unaffected in the flax oil treatment group. Both flax and fish oil intervention downregulate the expression of fatty acid metabolism genes, transcription factors (sterol regulatory element-binding proteins-1c and nuclear factor-κβ), and their regulatory genes i.e., acetyl-coA carboxylase alpha, fatty acid synthase, and tumor necrosis factors-α. The peroxisome proliferator-activated receptor gamma gene expression was upregulated (p ≤ 0.001) in the fish oil treatment group. Whereas, carnitine palmitoyltransferase 1 and fatty acid binding protein gene expression were upregulated (p ≤ 0.001) in both flax and fish oil intervention group.


2016 ◽  
Vol 2016 ◽  
pp. 1-12 ◽  
Author(s):  
Simone Isling Pærregaard ◽  
Marianne Agerholm ◽  
Annette Karen Serup ◽  
Tao Ma ◽  
Bente Kiens ◽  
...  

Free fatty acid receptor-4 (FFAR4), also known as GPR120, has been reported to mediate the beneficial effects of omega-3 polyunsaturated fatty acids (ω3-PUFAs) by inducing an anti-inflammatory immune response. Thus, activation of FFAR4 has been reported to ameliorate chronic low-grade inflammation and insulin resistance accompanying obesity. However, conflicting reports on the role of FFAR4 in mediating the effects ofω3-PUFAs are emerging, suggesting that FFAR4 may not be the sole effector. Hence analyses of the importance of this receptor in relation to other signaling pathways and prominent effects ofω3-PUFAs remain to be elucidated. In the present study, we usedFfar4knockouts (KO) and heterozygous (HET) mice fed either low fat, low sucrose reference diet; high fat, high sucroseω3-PUFA; or high fat, high sucroseω6-PUFA diet for 36 weeks. We demonstrate that both KO and HET mice fedω3-PUFAs were protected against obesity, hepatic triacylglycerol accumulation, and whole-body insulin resistance. Moreover,ω3-PUFA fed mice had increased circulating protein levels of the anti-inflammatory adipokine, adiponectin, decreased fasting insulin levels, and decreased mRNA expression of several proinflammatory molecules within visceral adipose tissue. In conclusion, we find that FFAR4 signaling is not required for the reported anti-inflammatory and insulin-sensitizing effects mediated byω3-PUFAs.


Sign in / Sign up

Export Citation Format

Share Document