scholarly journals Early life stress induces endothelial dysfunction in a mouse model of maternal separation

2012 ◽  
Vol 26 (S1) ◽  
Author(s):  
Dao H. Ho ◽  
Megan L. Yu ◽  
Catalina Bazacliu ◽  
Jennifer S. Pollock
2013 ◽  
Vol 33 (suppl_1) ◽  
Author(s):  
Dao H Ho ◽  
Jennifer S Pollock

Chromatin remodeling is an important factor in the etiology of vascular pathologies. Also, early life stress (ELS) is linked to increased risk of vascular disease in adults. We used maternal separation with early weaning (MSEW) to study mechanisms of ELS-mediated adult vascular dysfunction in male C57BL/6J mice. Litters were subjected to maternal separation 4h/day (postnatal day (PD) 2-5) and 8h/day (PD6-16), and weaned at PD17. Control (CON) litters were undisturbed until weaning at PD21. Subsequent experiments were performed at 12 weeks old. MSEW blunted aortic ACh-mediated vasorelaxation (MSEW: 68% vs CON: 90%, p=0.01), while SNP-induced vasorelaxation was similar in CON and MSEW aortae. Apocynin (300 μM) and superoxide dismutase (100 U/mL) normalized MSEW-induced endothelial dysfunction. We hypothesize that ELS induces aortic endothelial dysfunction by increasing NADPH oxidase expression and/or decreasing nitric oxide synthase 3 (NOS3) expression. Aortic protein expression of NADPH oxidase subunit p67 was elevated in MSEW mice (45% increase from CON, n=11, p=0.02). NOS3 protein expression and NOS3 serine 1177 phosphorylation was not different between groups, indicating that NOS3 activation by phosphorylation does not contribute to ELS-induced endothelial dysfunction. We further hypothesize that chromatin modification mediates ELS-induced endothelial dysfunction. Aortic mRNA expressions of 84 chromatin modification enzymes (methyltransferases, demethylases, acetyltransferases, deacetylases) were assessed by qRT-PCR. Only histone deacetylase (HDAC) 1, 6 and 9 mRNA levels were significantly upregulated in MSEW aortae compared to CON (17%, 29% and 67% increase, respectively, p<0.05). However, only HDAC 9 protein expression was elevated in MSEW aortae (2 fold increase from CON, n=6, p=0.01). Accordingly, histone 3 lysine acetylation was slightly decreased in MSEW aortae (16% decrease from CON, n=6, p = 0.06). Pretreatment of aortae with an HDAC inhibitor, trichostatin A (TSA), normalized ACh-induced vasorelaxation in MSEW mice (MSEW: 68% vs MSEW + TSA: 88%, p=0.02), while not affecting ACh-induced vasorelaxation in CON mice. We conclude that ELS induces endothelial dysfunction, most likely, through an HDAC 9-mediated pathway.


Hypertension ◽  
2012 ◽  
Vol 60 (suppl_1) ◽  
Author(s):  
Dao H Ho ◽  
Jennifer S Pollock

Epidemiological studies show that early life stress (ELS) is linked to cardiovascular disease in adulthood. We used a model of maternal separation with early weaning (MSEW) to study the mechanisms of ELS-mediated adult vascular dysfunction in male C57BL/6J mice. MSEW litters were subjected to maternal separation 4h/day (postnatal day (PD) 2 to 5) and 8h/day (PD6 to 16), and weaned at PD17. Control (CON) litters were undisturbed until weaning at PD21. All subsequent experiments were performed in adult mice (12 weeks old). We hypothesized that MSEW increases vascular inflammation and endothelial dysfunction in male mice. Systolic blood pressure (tail-cuff) of MSEW mice was not different from CON mice (109.3 + 10.9 vs 116.7 + 20.8 mmHg, respectively). Circulating soluble intercellular adhesion molecule (CON: 333.5 + 19.4 vs MSEW: 406.2 + 23.1 ng/ml; p = 0.03) and macrophage colony stimulating factor (CON: 737.4 + 19.6 vs MSEW: 945.3 + 65.4 pg/ml; p = 0.01) were elevated by MSEW. Also, aortic adventitial macrophage infiltration was increased in mice exposed to MSEW (F4/80 immunostaining; CON: 2.8 + 2.3 vs MSEW: 7.0 + 2.2 cells/mm 2 ; p = 0.05). We performed wire myography on thoracic aortae to determine vasorelaxation with cumulative concentration-response curve to acetylcholine (ACh; 1 X 10 -9 M to 3 X 10 -5 M) and sodium nitroprusside (SNP; 1 X 10 -10 M to 3 X 10 -5 M). MSEW induced blunted ACh-mediated vasorelaxation (MSEW: 67.6 + 5.8 vs CON: 89.9 + 2.7 % of phenylephrine constriction (% of PE), p = 0.01), while SNP-induced vasorelaxation was similar in CON and MSEW mice. We further hypothesized that MSEW-induced endothelial dysfunction is mediated via increased histone deacetylase (HDAC) expression. Real-time quantitative PCR revealed upregulation of HDAC 1, 6 and 9 in aortae of MSEW mice (1.28 + 0.12, 1.28 + 0.18 and 1.65 + 0.05 fold change from CON, respectively, p < 0.05). Pretreatment with trichostatin A (TSA), an HDAC inhibitor, normalized ACh-induced vasorelaxation in aortae of MSEW mice (MSEW: 67.6 + 5.8 vs MSEW + TSA: 88.44 + 3.2 % of PE, p = 0.02), while not affecting ACh-induced vasorelaxation in aortae from CON mice (CON: 89.9 + 2.7 vs CON + TSA: 90.3 + 4.5 % of PE). We conclude that ELS induces blood pressure-independent endothelial dysfunction through an HDAC-mediated pathway.


2014 ◽  
Vol 34 (suppl_1) ◽  
Author(s):  
Dao H Ho ◽  
Jennifer S Pollock

In humans, early life stress (ELS) is an independent risk factor for adult cardiovascular disease (CVD). We have shown that mice subjected to ELS by maternal separation with early weaning (MSEW), develop vascular endothelial dysfunction in adulthood. A marker of endothelial dysfunction and CVD is high hematocrit, an abnormally elevated level of circulating red blood cells. Hematocrit is largely regulated by erythropoietin (EPO), a protein that is released predominantly from the kidney under conditions of hypoxia. We hypothesized that MSEW increases circulating EPO and hematocrit in adult male mice. We used the MSEW model in C57BL6J mice to study the mechanisms of ELS-mediated alteration in hematocrit. MSEW litters were subjected to maternal separation 4h/day (postnatal day (PD) 2-5) and 8h/day (PD6-16), and weaned at PD17. Control (CON) litters were undisturbed until weaning at PD21. At 13 weeks of age, blood was collected from CON and MSEW male mice by cardiac puncture and lung tissue was excised. Hematocrit of MSEW mice was significantly higher than CON mice (46.2 ± 0.03 vs 43.3 ± 0.03%, p = 0.004). Plasma EPO, as measured by ELISA, was elevated in MSEW mice, however not significantly (112.89 ± 51.32 vs 61.62 ± 20.73 pg/ml, p = 0.06). We further hypothesized that MSEW enhances circulating endothelin-1 (ET-1) levels, a vasoactive peptide regulated by hypoxia and EPO. We found that plasma ET-1 was significantly increased in MSEW mice compared to CON (1.55 ± 0.41 vs 1.26 ± 0.23 pg/ml, p = 0.02). Endothelin receptor type A and B density and binding in lung, as measured by radioligand binding, was not different between groups, suggesting that increased circulating ET-1 in MSEW mice was not due to decreased ET-1 clearance in the lungs and most likely is due to increased production of ET-1. Taken together, our data suggest that MSEW-induced endothelial dysfunction may be mediated by an interplay of increased circulating red blood cells and elevated ET-1 production. Further studies are necessary to determine the exact role of these factors in this phenomenon.


Author(s):  
Zahra Lorigooini ◽  
Ali Nouri ◽  
Faezeh mottaghinia ◽  
Shima Balali-Dehkordi ◽  
Elham Bijad ◽  
...  

AbstractBackgroundExperiencing early-life stress plays an important role in the pathophysiology of anxiety disorders. Ferulic acid is a phenolic compound found in some plants which has several pharmacological properties. N-methyl-D-aspartate (NMDA) receptors are involved in the pathophysiology of mood disorders. In this study we aimed to assess the anxiolytic-like effect of ferulic acid in a mouse model of maternal separation (MS) stress by focusing on the possible involvement of NMDA receptors.MethodsMice were treated with ferulic acid (5 and 40 mg/kg) alone and in combination with NMDA receptor agonist/antagonist. Valid behavioral tests were performed, including open field test (OFT) and elevated plus maze test (EPM), while quantitative real time polymerase chain reaction (qRT-PCR) was used to evaluate gene expression of NMDA subunits (GluN2A and GluN2B) in the hippocampus.ResultsFindings showed that treatment of MS mice with ferulic acid increased the time spent in the central zone of the OFT and increased both open arm time and the percent of open arm entries in the EPM. Ferulic acid reduced the expression of NMDA receptor subunit genes. We showed that administration of NMDA receptor agonist (NMDA) and antagonist (ketamine) exerted anxiogenic and anxiolytic-like effects, correspondingly. Results showed that co-administration of a sub-effective dose of ferulic acid plus ketamine potentiated the anxiolytic-like effect of ferulic acid. Furthermore, co-administration of an effective dose of ferulic acid plus NMDA receptor agonist (NMDA) attenuated the anxiolytic-like effect of ferulic acid.ConclusionsIn deduction, our findings showed that NMDA, partially at least, is involved in the anxiolytic-like effect of ferulic acid in the OFT and EPM tests.


2021 ◽  
Vol 22 (4) ◽  
pp. 1899 ◽  
Author(s):  
Hae Jeong Park ◽  
Sang A. Kim ◽  
Won Sub Kang ◽  
Jong Woo Kim

Recent studies have reported that changes in gut microbiota composition could induce neuropsychiatric problems. In this study, we investigated alterations in gut microbiota induced by early-life stress (ELS) in rats subjected to maternal separation (MS; 6 h a day, postnatal days (PNDs) 1–21), along with changes in inflammatory cytokines and tryptophan-kynurenine (TRP-KYN) metabolism, and assessed the differences between sexes. High-throughput sequencing of the bacterial 16S rRNA gene showed that the relative abundance of the Bacteroides genus was increased and that of the Lachnospiraceae family was decreased in the feces of MS rats of both sexes (PND 56). By comparison, MS increased the relative abundance of the Streptococcus genus and decreased that of the Staphylococcus genus only in males, whereas the abundance of the Sporobacter genus was enhanced and that of the Mucispirillum genus was reduced by MS only in females. In addition, the levels of proinflammatory cytokines were increased in the colons (IFN-γ and IL-6) and sera (IL-1β) of the male MS rats, together with the elevation of the KYN/TRP ratio in the sera, but not in females. In the hippocampus, MS elevated the level of IL-1β and the KYN/TRP ratio in both male and female rats. These results indicate that MS induces peripheral and central inflammation and TRP-KYN metabolism in a sex-dependent manner, together with sex-specific changes in gut microbes.


2018 ◽  
Vol 246 (3) ◽  
pp. 155-165 ◽  
Author(s):  
Ryusuke Ouchi ◽  
Tasuku Kawano ◽  
Hitomi Yoshida ◽  
Masato Ishii ◽  
Tomomitsu Miyasaka ◽  
...  

Endocrinology ◽  
2008 ◽  
Vol 149 (10) ◽  
pp. 4892-4900 ◽  
Author(s):  
Courtney J. Rice ◽  
Curt A. Sandman ◽  
Mohammed R. Lenjavi ◽  
Tallie Z. Baram

Chronic early-life stress (ES) exerts profound acute and long-lasting effects on the hypothalamic-pituitary-adrenal system, with relevance to cognitive function and affective disorders. Our ability to determine the molecular mechanisms underlying these effects should benefit greatly from appropriate mouse models because these would enable use of powerful transgenic methods. Therefore, we have characterized a mouse model of chronic ES, which was provoked in mouse pups by abnormal, fragmented interactions with the dam. Dam-pup interaction was disrupted by limiting the nesting and bedding material in the cages, a manipulation that affected this parameter in a dose-dependent manner. At the end of their week-long rearing in the limited-nesting cages, mouse pups were stressed, as apparent from elevated basal plasma corticosterone levels. In addition, steady-state mRNA levels of CRH in the hypothalamic paraventricular nucleus of ES-experiencing pups were reduced, without significant change in mRNA levels of arginine vasopressin. Rearing mouse pups in this stress-provoking cage environment resulted in enduring effects: basal plasma corticosterone levels were still increased, and CRH mRNA levels in paraventricular nucleus remained reduced in adult ES mice, compared with those of controls. In addition, hippocampus-dependent learning and memory functions were impaired in 4- to 8-month-old ES mice. In summary, this novel, robust model of chronic early life stress in the mouse results in acute and enduring neuroendocrine and cognitive abnormalities. This model should facilitate the examination of the specific genes and molecules involved in the generation of this stress as well as in its consequences.


2019 ◽  
Vol 79 (1) ◽  
pp. 113-132 ◽  
Author(s):  
Marion Rincel ◽  
Muriel Darnaudéry

The developmental period constitutes a critical window of sensitivity to stress. Indeed, early-life adversity increases the risk to develop psychiatric diseases, but also gastrointestinal disorders such as the irritable bowel syndrome at adulthood. In the past decade, there has been huge interest in the gut–brain axis, especially as regards stress-related emotional behaviours. Animal models of early-life adversity, in particular, maternal separation (MS) in rodents, demonstrate lasting deleterious effects on both the gut and the brain. Here, we review the effects of MS on both systems with a focus on stress-related behaviours. In addition, we discuss more recent findings showing the impact of gut-directed interventions, including nutrition with pre- and probiotics, illustrating the role played by gut microbiota in mediating the long-term effects of MS. Overall, preclinical studies suggest that nutritional approaches with pro- and prebiotics may constitute safe and efficient strategies to attenuate the effects of early-life stress on the gut–brain axis. Further research is required to understand the complex mechanisms underlying gut–brain interaction dysfunctions after early-life stress as well as to determine the beneficial impact of gut-directed strategies in a context of early-life adversity in human subjects.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jonas Englund ◽  
Joni Haikonen ◽  
Vasilii Shteinikov ◽  
Shyrley Paola Amarilla ◽  
Tsvetomira Atanasova ◽  
...  

AbstractEarly life stress (ELS) is a well-characterized risk factor for mood and anxiety disorders. GABAergic microcircuits in the amygdala are critically implicated in anxiety; however, whether their function is altered after ELS is not known. Here we identify a novel mechanism by which kainate receptors (KARs) modulate feedforward inhibition in the lateral amygdala (LA) and show that this mechanism is downregulated after ELS induced by maternal separation (MS). Specifically, we show that in control rats but not after MS, endogenous activity of GluK1 subunit containing KARs disinhibit LA principal neurons during activation of cortical afferents. GluK1 antagonism attenuated excitability of parvalbumin (PV)-expressing interneurons, resulting in loss of PV-dependent inhibitory control and an increase in firing of somatostatin-expressing interneurons. Inactivation of Grik1 expression locally in the adult amygdala reduced ongoing GABAergic transmission and was sufficient to produce a mild anxiety-like behavioral phenotype. Interestingly, MS and GluK1-dependent phenotypes showed similar gender specificity, being detectable in male but not female rodents. Our data identify a novel KAR-dependent mechanism for cell-type and projection-specific functional modulation of the LA GABAergic microcircuit and suggest that the loss of GluK1 KAR function contributes to anxiogenesis after ELS.


Hypertension ◽  
2015 ◽  
Vol 66 (suppl_1) ◽  
Author(s):  
Carmen De Miguel ◽  
Dao H Ho ◽  
Analia S Loria ◽  
Ijeoma Obi ◽  
Jennifer S Pollock

We previously reported that maternal separation (MatSep), an animal model of early life stress, sensitizes rats to pro-hypertensive stimuli in adulthood. We hypothesized that MatSep induces a renal pro-inflammatory immune response. Immune cell populations and expression of cytokines were assessed by magnetic bead isolation, FACS analysis, ELISA and RT-PCR in adult male MatSep and normally-reared littermate control rats. Circulating and renal mononuclear or T cell numbers were similar between control and MatSep rats (n=4-11/group, p>0.05). Both groups presented similar percentages of circulating macrophages and T H , T C , and T reg cells (n=4, p>0.05). However, the percentage of circulating B cells was significantly decreased in MatSep rats (23.7±1.2% vs. 20.1±0.7%; n=4, p<0.05). Pro-inflammatory cytokine IL-1Beta was significantly elevated in kidneys from MatSep rats (4.4±0.5 vs. 7.9±1.0 pg/mg prot; n=7-8/group; p<0.05). However, IFN-gamma, IL-6, and IL-4 were not different between control and MatSep rats. To further assess the immune system in MatSep and control rats, we acutely challenged adult rats with lipopolysaccharide (LPS; 2 mg/kg; i.v., 14 h). LPS significantly elevated renal expression of pro-inflammatory chemokine receptors (CCR3, CCR4, CXCR4), cytokines (IFN-gamma, CCL3, CCL4, IL-16), and activation markers (CD40, CD40lg) in MatSep rats (4 to 6 fold increase; n=5/group, p<0.05), suggesting that MatSep induces an exaggerated pro-inflammatory renal immune response to LPS. In conclusion, early life stress induces a renal pro-inflammatory status in adulthood that leads to sensitization to further immune challenges. Funded by P01 HL 69999 to JSP, NIH T32 DK007545 to CDM, F32 HL 116145 to DHH and K99/R00 HL 111354 to ASL.


Sign in / Sign up

Export Citation Format

Share Document