scholarly journals Rate Dependence of Regional Cerebral Activation during Performance of a Repetitive Motor Task: A PET Study

1996 ◽  
Vol 16 (5) ◽  
pp. 794-803 ◽  
Author(s):  
Morten Blinkenberg ◽  
Christian Bonde ◽  
Søren Holm ◽  
Claus Svarer ◽  
Jimmy Andersen ◽  
...  

Using repeated positron emission tomography (PET) measures of regional cerebral counts, we investigated the regional cortical activations induced in eight normal subjects performing eight different frequencies of fingertapping (0.5–4 Hz) with the right index finger. The task was auditorially cued and the performance recorded during the scanning procedure. Performance evaluation showed increased error rates, during fingertapping, of high and low frequencies, and the best tapping performance was measured in the midrange of frequencies. Significantly activated areas ( p < 0.05) of normalized cerebral counts were located in the left sensorimotor cortex (M1S1), right motor cortex, left thalamus, right insula, supplementary motor area (SMA), and bilaterally in the primary auditory cortex and the cerebellum. Statistical evaluation showed a significant ( p < 0.01) and positive dependence of cerebral activation upon movement rate in the contralateral M1S1. There was no significant rate dependence of cerebral activation in other activated motor areas. The SMA and the right cerebellar hemisphere showed a more uniform activation throughout the tapping frequency range. Furthermore, we found a stimulus rate dependence of cerebral activation in the primary auditory cortex. We believe that the present data provide useful information for the preparation and interpretation of future motor activation studies of normal human subjects and may serve as reference points for studies of pathological conditions.

2010 ◽  
Vol 103 (5) ◽  
pp. 2339-2354 ◽  
Author(s):  
M. Vater ◽  
E. Foeller ◽  
E. C. Mora ◽  
F. Coro ◽  
I. J. Russell ◽  
...  

The primary auditory cortex (AI) of adult Pteronotus parnellii features a foveal representation of the second harmonic constant frequency (CF2) echolocation call component. In the corresponding Doppler-shifted constant frequency (DSCF) area, the 61 kHz range is over-represented for extraction of frequency-shift information in CF2 echoes. To assess to which degree AI postnatal maturation depends on active echolocation or/and reflects ongoing cochlear maturation, cortical neurons were recorded in juveniles up to postnatal day P29, before the bats are capable of active foraging. At P1-2, neurons in posterior AI are tuned sensitively to low frequencies (22–45 dB SPL, 28–35 kHz). Within the prospective DSCF area, neurons had insensitive responses (>60 dB SPL) to frequencies <40 kHz and lacked sensitive tuning curve tips. Up to P10, when bats do not yet actively echolocate, tonotopy is further developed and DSCF neurons respond to frequencies of 51–57 kHz with maximum tuning sharpness ( Q10dB) of 57. Between P11 and 20, the frequency representation in AI includes higher frequencies anterior and dorsal to the DSCF area. More multipeaked neurons (33%) are found than at older age. In the oldest group, DSCF neurons are tuned to frequencies close to 61 kHz with Q10dB values ≤212, and threshold sensitivity, tuning sharpness and cortical latencies are adult-like. The data show that basic aspects of cortical tonotopy are established before the bats actively echolocate. Maturation of tonotopy, increase of tuning sharpness, and upward shift in the characteristic frequency of DSCF neurons appear to strongly reflect cochlear maturation.


2009 ◽  
Vol 24 (S1) ◽  
pp. 1-1
Author(s):  
P. Ferreira ◽  
S. Simões ◽  
J. Cerqueira ◽  
J. Soares-Fernandes ◽  
Á. Machado

Introduction:Although probably undereported, musical hallucinosis is very rare and usually bilateral. It refers to auditory complex hallucinations, for which the patient has full insight, and includes melodies, tunes, rhythms and timbres.Clinical case:A 71-year-old women was seen for a history of hearing music in the right ear. She had mild hypertension and auricular fibrillation, being chronically medicated with aspirine, bisoprolol and hydroclorothiazide. Three months previously she started hearing some popular folk Portuguese songs in the right ear. She could identify the lyrics and sing the songs she heard. Weeks later fado and classical music were added to the repertoire, and later on she started hearing less well-formed sounds like “dlam... dlam” or “uhh... uhh”. There were no other auditory or visual hallucinations. She was seen by an otorhinolaryngologist, and made an audiogram showing bilateral, right-predominant, pre-coclear deafness with normal evoked brainstem auditory potentials. An MRI showed small deep subcortical lacunar lesions. EEG was normal. PET scan showed left temporal hypometabolism. On benzodiazepines she had discrete improvement.Conclusion:Musical hallucinosis has been found mainly in deaf patients, and a similar mechanism to that of Charles-Bonnet syndrome has been proposed. Sensory deprivation of primary auditory cortex would “release” the secondary auditory cortex, to produce complex auditory hallucinations with full insight. In our patient we were able to demonstrate the integrity of the brainstem pathway, supporting a direct link between diminished right ear sound transmission and left temporal lobe diminished activation as ascertained by the pet scan.


1987 ◽  
Vol 57 (6) ◽  
pp. 1746-1766 ◽  
Author(s):  
G. L. Kavanagh ◽  
J. B. Kelly

Ferrets were tested in a semicircular apparatus to determine the effects of auditory cortical lesions on their ability to localize sounds in space. They were trained to initiate trials while facing forward in the apparatus, and sounds were presented from one of two loudspeakers located in the horizontal plane. Minimum audible angles were obtained for three different positions, viz., the left hemifield, with loudspeakers centered around -60 degrees azimuth; the right hemifield, with loudspeakers centered around +60 degrees azimuth; and the midline with loudspeakers centered around 0 degrees azimuth. Animals with large bilateral lesions had severe impairments in localizing a single click in the midline test. Following complete destruction of the auditory cortex performance was only marginally above the level expected by chance even at large angles of speaker separation. Severe impairments were also found in localization of single clicks in both left and right lateral fields. In contrast, bilateral lesions restricted to the primary auditory cortex resulted in minimal impairments in midline localization. The same lesions, however, produced severe impairments in localization of single clicks in both left and right lateral fields. Large unilateral lesions that destroyed auditory cortex in one hemisphere resulted in an inability to localize single clicks in the contralateral hemifield. In contrast, no impairments were found in the midline test or in the ipsilateral hemifield. Unilateral lesions of the primary auditory cortex resulted in severe contralateral field deficits equivalent to those seen following complete unilateral destruction of auditory cortex. No deficits were seen in either the midline or the ipsilateral tests.


2021 ◽  
Vol 15 ◽  
Author(s):  
Agnès Trébuchon ◽  
F.-Xavier Alario ◽  
Catherine Liégeois-Chauvel

The posterior part of the superior temporal gyrus (STG) has long been known to be a crucial hub for auditory and language processing, at the crossroad of the functionally defined ventral and dorsal pathways. Anatomical studies have shown that this “auditory cortex” is composed of several cytoarchitectonic areas whose limits do not consistently match macro-anatomic landmarks like gyral and sulcal borders. The only method to record and accurately distinguish neuronal activity from the different auditory sub-fields of primary auditory cortex, located in the tip of Heschl and deeply buried in the Sylvian fissure, is to use stereotaxically implanted depth electrodes (Stereo-EEG) for pre-surgical evaluation of patients with epilepsy. In this prospective, we focused on how anatomo-functional delineation in Heschl’s gyrus (HG), Planum Temporale (PT), the posterior part of the STG anterior to HG, the posterior superior temporal sulcus (STS), and the region at the parietal-temporal boundary commonly labeled “SPT” can be achieved using data from electrical cortical stimulation combined with electrophysiological recordings during listening to pure tones and syllables. We show the differences in functional roles between the primary and non-primary auditory areas, in the left and the right hemispheres. We discuss how these findings help understanding the auditory semiology of certain epileptic seizures and, more generally, the neural substrate of hemispheric specialization for language.


2019 ◽  
Author(s):  
Agnès Job ◽  
Anne Kavounoudias ◽  
Chloé Jaroszynski ◽  
Assia Jaillard ◽  
Chantal Delon-Martin

ABSTRACTTinnitus mechanisms remain poorly understood. Our previous functional MRI (fMRI) studies demonstrated an abnormal hyperactivity in the right parietal operculum 3 (OP3) in acoustic trauma tinnitus and during provoked phantom sound perceptions without hearing loss, which lead us to propose a new model of tinnitus. This new model is not directly linked with hearing loss and primary auditory cortex abnormalities, but with a proprioceptive disturbance related to middle-ear muscles. In the present study, a seed-based resting-state functional MRI method was used to explore the potential abnormal connectivity of this opercular region between an acoustic trauma tinnitus group presenting slight to mild tinnitus and a control group. Primary auditory cortex seeds were also explored because they were thought to be directly involved in tinnitus in most current models. In such a model, hearing loss and tinnitus handicap were confounding factors and were therefore regressed in our analysis. Between-groups comparisons showed a significant specific connectivity between the right OP3 seeds and the potential human homologue of the premotor ear-eye field (H-PEEF) bilaterally and the inferior parietal lobule (IPL) in the tinnitus group. Our findings suggest the existence of a simultaneous premotor ear-eye disturbance in tinnitus that could lift the veil on unexplained subclinical abnormalities in oculomotor tests found in tinnitus patients with normal vestibular responses. The present work confirms the involvement of the OP3 subregion in acoustic trauma tinnitus and provides some new clues to explain its putative mechanisms.


2008 ◽  
Vol 99 (4) ◽  
pp. 1628-1642 ◽  
Author(s):  
Shveta Malhotra ◽  
G. Christopher Stecker ◽  
John C. Middlebrooks ◽  
Stephen G. Lomber

We examined the contributions of primary auditory cortex (A1) and the dorsal zone of auditory cortex (DZ) to sound localization behavior during separate and combined unilateral and bilateral deactivation. From a central visual fixation point, cats learned to make an orienting response (head movement and approach) to a 100-ms broadband noise burst emitted from a central speaker or one of 12 peripheral sites (located in front of the animal, from left 90° to right 90°, at 15° intervals) along the horizontal plane. Following training, each cat was implanted with separate cryoloops over A1 and DZ bilaterally. Unilateral deactivation of A1 or DZ or simultaneous unilateral deactivation of A1 and DZ (A1/DZ) resulted in spatial localization deficits confined to the contralateral hemifield, whereas sound localization to positions in the ipsilateral hemifield remained unaffected. Simultaneous bilateral deactivation of both A1 and DZ resulted in sound localization performance dropping from near-perfect to chance (7.7% correct) across the entire field. Errors made during bilateral deactivation of A1/DZ tended to be confined to the same hemifield as the target. However, unlike the profound sound localization deficit that occurs when A1 and DZ are deactivated together, deactivation of either A1 or DZ alone produced partial and field-specific deficits. For A1, bilateral deactivation resulted in higher error rates (performance dropping to ∼45%) but relatively small errors (mostly within 30° of the target). In contrast, bilateral deactivation of DZ produced somewhat fewer errors (performance dropping to only ∼60% correct), but the errors tended to be larger, often into the incorrect hemifield. Therefore individual deactivation of either A1 or DZ produced specific and unique sound localization deficits. The results of the present study reveal that DZ plays a role in sound localization. Along with previous anatomical and physiological data, these behavioral data support the view that A1 and DZ are distinct cortical areas. Finally, the findings that deactivation of either A1 or DZ alone produces partial sound localization deficits, whereas deactivation of either posterior auditory field (PAF) or anterior ectosylvian sulcus (AES) produces profound sound localization deficits, suggests that PAF and AES make more significant contributions to sound localization than either A1 or DZ.


1988 ◽  
Vol 59 (5) ◽  
pp. 1627-1638 ◽  
Author(s):  
S. L. Sally ◽  
J. B. Kelly

1. Responses of neurons in the auditory cortex of the albino rat were examined using microelectrode mapping techniques. Characteristic frequencies were determined for numerous electrode penetrations across the cortical surface in individual animals. A primary auditory area was identified in the posterolateral neocortex that was characterized by short latency responses to tone bursts and tonotopic organization with high frequencies represented rostrally and low frequencies, caudally. Within this area cells with similar characteristic frequencies were aligned in a dorsoventral orientation to form isofrequency contours. 2. Tuning curves obtained from primary auditory cortex were characteristically "V" shaped with Q10's ranging from 0.97 to 28.4. Maximum Q10 values increased monotonically with characteristic frequency (CF). The lowest thresholds at CF closely approximated the behavioral audiogram for the albino rat. Many neurons, however, had CF thresholds well above the behavioral limit. 3. Areas were found dorsal and ventral to the primary auditory cortex in which CF's were clearly discontinuous with the neighboring isofrequency contours. These data suggest the presence of other auditory fields, the detailed characteristics of which have yet to be examined.


1990 ◽  
Vol 2 (3) ◽  
pp. 195-212 ◽  
Author(s):  
Mark Jude Tramo ◽  
Jamshed J. Bharucha ◽  
Frank E. Musiek

We present experimental and anatomical data from a case study of impaired auditory perception following bilateral hemispheric strokes. To consider the cortical representation of sensory, perceptual, and cognitive functions mediating tonal information processing in music, pure tone sensation thresholds, spectral intonation judgments, and the associative priming of spectral intonation judgments by harmonic context were examined, and lesion localization was analyzed quantitatively using straight-line two-dimensional maps of the cortical surface reconstructed from magnetic resonance images. Despite normal pure tone sensation thresholds at 250–8000 Hz, the perception of tonal spectra was severely impaired, such that harmonic structures (major triads) were almost uniformly judged to sound dissonant; yet, the associative priming of spectral intonation judgments by harmonic context was preserved, indicating that cognitive representations of tonal hierarchies in music remained intact and accessible. Brainprints demonstrated complete bilateral lesions of the transverse gyri of Heschl and partial lesions of the right and left superior temporal gyri involving 98 and 20% of their surface areas, respectively. In the right hemisphere, there was partial sparing of the planum temporale, temporoparietal junction, and inferior parietal cortex. In the left hemisphere, all of the superior temporal region anterior to the transverse gyrus and parts of the planum temporale, temporoparietal junction, inferior parietal cortex, and insula were spared. These observations suggest that (1) sensory, perceptual, and cognitive functions mediating tonal information processing in music are neurologically dissociable; (2) complete bilateral lesions of primary auditory cortex combined with partial bilateral lesions of auditory association cortex chronically impair tonal consonance perception; (3) cognitive functions that hierarchically structure pitch information and generate harmonic expectancies during music perception do not rely on the integrity of primary auditory cortex; and (4) musical priming may be mediated by broadly tuned subcomponents of the thala-mocortical auditory system.


2005 ◽  
Vol 93 (1) ◽  
pp. 378-392 ◽  
Author(s):  
Masahiko Tomita ◽  
Jos J. Eggermont

Recordings were made from the right primary auditory cortex in 17 adult cats using two eight-electrode arrays. We recorded the neural activity under spontaneous firing conditions and during random, multi-frequency stimulation, at 65 dB SPL, from the same units. Multiple single-unit (MSU) recordings (281) were stationary through 900 s of silence and during 900 s of stimulation. The cross-correlograms of 545 MSU pairs with peak lag times within 10 ms from zero lag time were analyzed. Stimulation reduced the correlation in background activity, and as a result, the signal-to-noise ratio of correlated activity in response to the stimulus was enhanced. Reconstructed spectro-temporal receptive fields (STRFs) for coincident spikes showed larger STRF overlaps, suggesting that coincident neural activity serves to sharpen the resolution in the spectro-temporal domain. The cross-correlation for spikes contributing to the STRF depended much stronger on the STRF overlap than the cross-correlation during either silence or for spikes that did not contribute to the STRF (OUT-STRF). Compared with that for firings during silence, the cross-correlation for the OUT-STRF spikes was much reduced despite the unchanged firing rate. This suggests that stimulation breaks up the large neural assembly that exists during long periods of silence into a stimulus related one and maybe several others. As a result, the OUT-STRF spikes of the unit pairs, now likely distributed across several assemblies, are less correlated than during long periods of silence. Thus the ongoing network activity is significantly different from that during stimulation and changes afterng arousal during stimulation.


2000 ◽  
Vol 6 (S2) ◽  
pp. 570-571
Author(s):  
R.J. Mount ◽  
R.V. Harrison ◽  
N. Harel ◽  
J. Panesar ◽  
H. Hamrahi

INTRODUCTION: The chinchilla animal model is widely used to study the function of the auditory system. The location of auditory cortex in the chinchilla has previously been determined both electrophysiologically and by optical imaging of intrinsic signals. The spatial resolution of functional imaging techniques which rely on changes in the BOLD (blood oxygen dependent level) signal to create images of activity (i.e., fMRI and optical imaging) are ultimately dependent on the resolution of microcirulatory control mechanisms. For example, in response to pure tone auditory stimuli, functional resolution (within cortex) of approximately 400 um has been demonstrated using optical imaging. To better understand the limits of functional imaging the present study was undertaken to explore the structure and properties of the arterial supply within auditory cortex.METHODS: Plastic casts of the cerebral vasculature were prepared by cannulating the ascending aorta, incising the right atrium and then perfusing 50 ml heparinized PBS followed by 20 ml of Batson's #17 resin.


Sign in / Sign up

Export Citation Format

Share Document