The Women who Heard Folk Portuguese Music in the Right Ear: A Case of Unilateral Musical Hallucinosis

2009 ◽  
Vol 24 (S1) ◽  
pp. 1-1
Author(s):  
P. Ferreira ◽  
S. Simões ◽  
J. Cerqueira ◽  
J. Soares-Fernandes ◽  
Á. Machado

Introduction:Although probably undereported, musical hallucinosis is very rare and usually bilateral. It refers to auditory complex hallucinations, for which the patient has full insight, and includes melodies, tunes, rhythms and timbres.Clinical case:A 71-year-old women was seen for a history of hearing music in the right ear. She had mild hypertension and auricular fibrillation, being chronically medicated with aspirine, bisoprolol and hydroclorothiazide. Three months previously she started hearing some popular folk Portuguese songs in the right ear. She could identify the lyrics and sing the songs she heard. Weeks later fado and classical music were added to the repertoire, and later on she started hearing less well-formed sounds like “dlam... dlam” or “uhh... uhh”. There were no other auditory or visual hallucinations. She was seen by an otorhinolaryngologist, and made an audiogram showing bilateral, right-predominant, pre-coclear deafness with normal evoked brainstem auditory potentials. An MRI showed small deep subcortical lacunar lesions. EEG was normal. PET scan showed left temporal hypometabolism. On benzodiazepines she had discrete improvement.Conclusion:Musical hallucinosis has been found mainly in deaf patients, and a similar mechanism to that of Charles-Bonnet syndrome has been proposed. Sensory deprivation of primary auditory cortex would “release” the secondary auditory cortex, to produce complex auditory hallucinations with full insight. In our patient we were able to demonstrate the integrity of the brainstem pathway, supporting a direct link between diminished right ear sound transmission and left temporal lobe diminished activation as ascertained by the pet scan.

1987 ◽  
Vol 57 (6) ◽  
pp. 1746-1766 ◽  
Author(s):  
G. L. Kavanagh ◽  
J. B. Kelly

Ferrets were tested in a semicircular apparatus to determine the effects of auditory cortical lesions on their ability to localize sounds in space. They were trained to initiate trials while facing forward in the apparatus, and sounds were presented from one of two loudspeakers located in the horizontal plane. Minimum audible angles were obtained for three different positions, viz., the left hemifield, with loudspeakers centered around -60 degrees azimuth; the right hemifield, with loudspeakers centered around +60 degrees azimuth; and the midline with loudspeakers centered around 0 degrees azimuth. Animals with large bilateral lesions had severe impairments in localizing a single click in the midline test. Following complete destruction of the auditory cortex performance was only marginally above the level expected by chance even at large angles of speaker separation. Severe impairments were also found in localization of single clicks in both left and right lateral fields. In contrast, bilateral lesions restricted to the primary auditory cortex resulted in minimal impairments in midline localization. The same lesions, however, produced severe impairments in localization of single clicks in both left and right lateral fields. Large unilateral lesions that destroyed auditory cortex in one hemisphere resulted in an inability to localize single clicks in the contralateral hemifield. In contrast, no impairments were found in the midline test or in the ipsilateral hemifield. Unilateral lesions of the primary auditory cortex resulted in severe contralateral field deficits equivalent to those seen following complete unilateral destruction of auditory cortex. No deficits were seen in either the midline or the ipsilateral tests.


2021 ◽  
Vol 15 ◽  
Author(s):  
Agnès Trébuchon ◽  
F.-Xavier Alario ◽  
Catherine Liégeois-Chauvel

The posterior part of the superior temporal gyrus (STG) has long been known to be a crucial hub for auditory and language processing, at the crossroad of the functionally defined ventral and dorsal pathways. Anatomical studies have shown that this “auditory cortex” is composed of several cytoarchitectonic areas whose limits do not consistently match macro-anatomic landmarks like gyral and sulcal borders. The only method to record and accurately distinguish neuronal activity from the different auditory sub-fields of primary auditory cortex, located in the tip of Heschl and deeply buried in the Sylvian fissure, is to use stereotaxically implanted depth electrodes (Stereo-EEG) for pre-surgical evaluation of patients with epilepsy. In this prospective, we focused on how anatomo-functional delineation in Heschl’s gyrus (HG), Planum Temporale (PT), the posterior part of the STG anterior to HG, the posterior superior temporal sulcus (STS), and the region at the parietal-temporal boundary commonly labeled “SPT” can be achieved using data from electrical cortical stimulation combined with electrophysiological recordings during listening to pure tones and syllables. We show the differences in functional roles between the primary and non-primary auditory areas, in the left and the right hemispheres. We discuss how these findings help understanding the auditory semiology of certain epileptic seizures and, more generally, the neural substrate of hemispheric specialization for language.


2019 ◽  
Author(s):  
Agnès Job ◽  
Anne Kavounoudias ◽  
Chloé Jaroszynski ◽  
Assia Jaillard ◽  
Chantal Delon-Martin

ABSTRACTTinnitus mechanisms remain poorly understood. Our previous functional MRI (fMRI) studies demonstrated an abnormal hyperactivity in the right parietal operculum 3 (OP3) in acoustic trauma tinnitus and during provoked phantom sound perceptions without hearing loss, which lead us to propose a new model of tinnitus. This new model is not directly linked with hearing loss and primary auditory cortex abnormalities, but with a proprioceptive disturbance related to middle-ear muscles. In the present study, a seed-based resting-state functional MRI method was used to explore the potential abnormal connectivity of this opercular region between an acoustic trauma tinnitus group presenting slight to mild tinnitus and a control group. Primary auditory cortex seeds were also explored because they were thought to be directly involved in tinnitus in most current models. In such a model, hearing loss and tinnitus handicap were confounding factors and were therefore regressed in our analysis. Between-groups comparisons showed a significant specific connectivity between the right OP3 seeds and the potential human homologue of the premotor ear-eye field (H-PEEF) bilaterally and the inferior parietal lobule (IPL) in the tinnitus group. Our findings suggest the existence of a simultaneous premotor ear-eye disturbance in tinnitus that could lift the veil on unexplained subclinical abnormalities in oculomotor tests found in tinnitus patients with normal vestibular responses. The present work confirms the involvement of the OP3 subregion in acoustic trauma tinnitus and provides some new clues to explain its putative mechanisms.


1990 ◽  
Vol 2 (3) ◽  
pp. 195-212 ◽  
Author(s):  
Mark Jude Tramo ◽  
Jamshed J. Bharucha ◽  
Frank E. Musiek

We present experimental and anatomical data from a case study of impaired auditory perception following bilateral hemispheric strokes. To consider the cortical representation of sensory, perceptual, and cognitive functions mediating tonal information processing in music, pure tone sensation thresholds, spectral intonation judgments, and the associative priming of spectral intonation judgments by harmonic context were examined, and lesion localization was analyzed quantitatively using straight-line two-dimensional maps of the cortical surface reconstructed from magnetic resonance images. Despite normal pure tone sensation thresholds at 250–8000 Hz, the perception of tonal spectra was severely impaired, such that harmonic structures (major triads) were almost uniformly judged to sound dissonant; yet, the associative priming of spectral intonation judgments by harmonic context was preserved, indicating that cognitive representations of tonal hierarchies in music remained intact and accessible. Brainprints demonstrated complete bilateral lesions of the transverse gyri of Heschl and partial lesions of the right and left superior temporal gyri involving 98 and 20% of their surface areas, respectively. In the right hemisphere, there was partial sparing of the planum temporale, temporoparietal junction, and inferior parietal cortex. In the left hemisphere, all of the superior temporal region anterior to the transverse gyrus and parts of the planum temporale, temporoparietal junction, inferior parietal cortex, and insula were spared. These observations suggest that (1) sensory, perceptual, and cognitive functions mediating tonal information processing in music are neurologically dissociable; (2) complete bilateral lesions of primary auditory cortex combined with partial bilateral lesions of auditory association cortex chronically impair tonal consonance perception; (3) cognitive functions that hierarchically structure pitch information and generate harmonic expectancies during music perception do not rely on the integrity of primary auditory cortex; and (4) musical priming may be mediated by broadly tuned subcomponents of the thala-mocortical auditory system.


2005 ◽  
Vol 93 (1) ◽  
pp. 378-392 ◽  
Author(s):  
Masahiko Tomita ◽  
Jos J. Eggermont

Recordings were made from the right primary auditory cortex in 17 adult cats using two eight-electrode arrays. We recorded the neural activity under spontaneous firing conditions and during random, multi-frequency stimulation, at 65 dB SPL, from the same units. Multiple single-unit (MSU) recordings (281) were stationary through 900 s of silence and during 900 s of stimulation. The cross-correlograms of 545 MSU pairs with peak lag times within 10 ms from zero lag time were analyzed. Stimulation reduced the correlation in background activity, and as a result, the signal-to-noise ratio of correlated activity in response to the stimulus was enhanced. Reconstructed spectro-temporal receptive fields (STRFs) for coincident spikes showed larger STRF overlaps, suggesting that coincident neural activity serves to sharpen the resolution in the spectro-temporal domain. The cross-correlation for spikes contributing to the STRF depended much stronger on the STRF overlap than the cross-correlation during either silence or for spikes that did not contribute to the STRF (OUT-STRF). Compared with that for firings during silence, the cross-correlation for the OUT-STRF spikes was much reduced despite the unchanged firing rate. This suggests that stimulation breaks up the large neural assembly that exists during long periods of silence into a stimulus related one and maybe several others. As a result, the OUT-STRF spikes of the unit pairs, now likely distributed across several assemblies, are less correlated than during long periods of silence. Thus the ongoing network activity is significantly different from that during stimulation and changes afterng arousal during stimulation.


1996 ◽  
Vol 16 (5) ◽  
pp. 794-803 ◽  
Author(s):  
Morten Blinkenberg ◽  
Christian Bonde ◽  
Søren Holm ◽  
Claus Svarer ◽  
Jimmy Andersen ◽  
...  

Using repeated positron emission tomography (PET) measures of regional cerebral counts, we investigated the regional cortical activations induced in eight normal subjects performing eight different frequencies of fingertapping (0.5–4 Hz) with the right index finger. The task was auditorially cued and the performance recorded during the scanning procedure. Performance evaluation showed increased error rates, during fingertapping, of high and low frequencies, and the best tapping performance was measured in the midrange of frequencies. Significantly activated areas ( p < 0.05) of normalized cerebral counts were located in the left sensorimotor cortex (M1S1), right motor cortex, left thalamus, right insula, supplementary motor area (SMA), and bilaterally in the primary auditory cortex and the cerebellum. Statistical evaluation showed a significant ( p < 0.01) and positive dependence of cerebral activation upon movement rate in the contralateral M1S1. There was no significant rate dependence of cerebral activation in other activated motor areas. The SMA and the right cerebellar hemisphere showed a more uniform activation throughout the tapping frequency range. Furthermore, we found a stimulus rate dependence of cerebral activation in the primary auditory cortex. We believe that the present data provide useful information for the preparation and interpretation of future motor activation studies of normal human subjects and may serve as reference points for studies of pathological conditions.


2000 ◽  
Vol 6 (S2) ◽  
pp. 570-571
Author(s):  
R.J. Mount ◽  
R.V. Harrison ◽  
N. Harel ◽  
J. Panesar ◽  
H. Hamrahi

INTRODUCTION: The chinchilla animal model is widely used to study the function of the auditory system. The location of auditory cortex in the chinchilla has previously been determined both electrophysiologically and by optical imaging of intrinsic signals. The spatial resolution of functional imaging techniques which rely on changes in the BOLD (blood oxygen dependent level) signal to create images of activity (i.e., fMRI and optical imaging) are ultimately dependent on the resolution of microcirulatory control mechanisms. For example, in response to pure tone auditory stimuli, functional resolution (within cortex) of approximately 400 um has been demonstrated using optical imaging. To better understand the limits of functional imaging the present study was undertaken to explore the structure and properties of the arterial supply within auditory cortex.METHODS: Plastic casts of the cerebral vasculature were prepared by cannulating the ascending aorta, incising the right atrium and then perfusing 50 ml heparinized PBS followed by 20 ml of Batson's #17 resin.


2018 ◽  
Author(s):  
Monzilur Rahman ◽  
Ben D. B. Willmore ◽  
Andrew J. King ◽  
Nicol S. Harper

ABSTRACTAuditory neurons encode stimulus history, which is often modelled using a span of time-delays in a spectro-temporal receptive field (STRF). We propose an alternative model for the encoding of stimulus history, which we apply to extracellular recordings of neurons in the primary auditory cortex of anaesthetized ferrets. For a linear-non-linear STRF model (LN model) to achieve a high level of performance in predicting single unit neural responses to natural sounds in the primary auditory cortex, we found that it is necessary to include time delays going back at least 200 ms in the past. This is an unrealistic time span for biological delay lines. We therefore asked how much of this dependence on stimulus history can instead be explained by dynamical aspects of neurons. We constructed a neural-network model whose output is the weighted sum of units whose responses are determined by a dynamic firing-rate equation. The dynamic aspect performs low-pass filtering on each unit’s response, providing an exponentially decaying memory whose time constant is individual to each unit. We find that this dynamic network (DNet) model, when fitted to the neural data using STRFs of only 25 ms duration, can achieve prediction performance on a held-out dataset comparable to the best performing LN model with STRFs of 200 ms duration. These findings suggest that integration due to the membrane time constants or other exponentially-decaying memory processes may underlie linear temporal receptive fields of neurons beyond 25 ms.AUTHOR SUMMARYThe responses of neurons in the primary auditory cortex depend on the recent history of sounds over seconds or less. Typically, this dependence on the past has been modelled by applying a wide span of time delays to the input, although this is likely to be biologically unrealistic. Real neurons integrate the history of their activity due to the dynamical properties of their cell membranes and other components. We show that a network with a realistically narrow span of delays and with units having dynamic characteristics like those found in neurons, succinctly models neural responses recorded from ferret primary auditory cortex. Because these integrative properties are widespread, our dynamic network provides a basis for modelling responses in other neural systems.


1990 ◽  
Vol 64 (5) ◽  
pp. 1527-1536 ◽  
Author(s):  
D. S. Barth ◽  
S. Di

1. A 8 X 8-channel microelectrode array was used to map epicortical field potentials evoked by bilaterally presented click stimuli from a 8 X 8-mm2 area in the right parietotemporal neocortex of four rats. In two rats, a 16-channel microelectrode array was also inserted into primary auditory cortex to record the laminar profile of auditory evoked potentials (AEP). 2. The epicortical responses began with a positive-negative fast wave followed by a positive-negative slow wave, similar to the previously reported P1, N1, P2, N2 complex. Topographical distributions of the potentials at the peak of each of these waves were distinct, suggesting that they were produced by separate but overlapping populations of cells. 3. Laminar recording revealed the asynchronous participation of supragranular and infragranular pyramidal cells in the generation of the evoked-response complex. The surface-recorded P1 was primarily produced by supragranular cells and the N1, by infragranular cells. The P2 and N2 were produced by temporally overlapping contributions from both cell groups. 4. We conclude that middle-latency components of the AEP complex are produced by both sequential and parallel activation of subpopulations of pyramidal cells in primary auditory cortex.


2021 ◽  
Vol 14 ◽  
Author(s):  
Prasandhya Astagiri Yusuf ◽  
Peter Hubka ◽  
Jochen Tillein ◽  
Martin Vinck ◽  
Andrej Kral

The function of the cerebral cortex essentially depends on the ability to form functional assemblies across different cortical areas serving different functions. Here we investigated how developmental hearing experience affects functional and effective interareal connectivity in the auditory cortex in an animal model with years-long and complete auditory deprivation (deafness) from birth, the congenitally deaf cat (CDC). Using intracortical multielectrode arrays, neuronal activity of adult hearing controls and CDCs was registered in the primary auditory cortex and the secondary posterior auditory field (PAF). Ongoing activity as well as responses to acoustic stimulation (in adult hearing controls) and electric stimulation applied via cochlear implants (in adult hearing controls and CDCs) were analyzed. As functional connectivity measures pairwise phase consistency and Granger causality were used. While the number of coupled sites was nearly identical between controls and CDCs, a reduced coupling strength between the primary and the higher order field was found in CDCs under auditory stimulation. Such stimulus-related decoupling was particularly pronounced in the alpha band and in top–down direction. Ongoing connectivity did not show such a decoupling. These findings suggest that developmental experience is essential for functional interareal interactions during sensory processing. The outcomes demonstrate that corticocortical couplings, particularly top-down connectivity, are compromised following congenital sensory deprivation.


Sign in / Sign up

Export Citation Format

Share Document