scholarly journals Extreme intrusive force affects the expression of c-Fos and matrix metallopeptidase 9 in human dental pulp tissues: Erratum

Medicine ◽  
2021 ◽  
Vol 100 (31) ◽  
pp. e26852
Medicine ◽  
2020 ◽  
Vol 99 (9) ◽  
pp. e19394
Author(s):  
Guanghong Han ◽  
Weiwei Liu ◽  
Huan Jiang ◽  
Dongsheng Yu ◽  
Min Hu

Materials ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2449
Author(s):  
Beata Kaczmarek-Szczepańska ◽  
Olha Mazur ◽  
Marta Michalska-Sionkowska ◽  
Krzysztof Łukowicz ◽  
Anna Maria Osyczka

In this study, hydrogels based on chitosan cross-linked by glyoxal have been investigated for potential medical applications. Hydrogels were loaded with tannic acid at different concentrations. The thermal stability and the polyphenol-releasing rate were determined. For a preliminary assessment of the clinical usefulness of the hydrogels, they were examined for blood compatibility and in the culture of human dental pulp cells (hDPC). The results showed that after immersion in a polyphenol solution, chitosan/glyoxal hydrogels remain nonhemolytic for erythrocytes, and we also did not observe the cytotoxic effect of hydrogels immersed in tannic acid (TA) solutions with different concentration. Tannic acid was successfully released from hydrogels, and its addition improved material thermal stability. Thus, the current findings open the possibility to consider such hydrogels in clinics.


2021 ◽  
Vol 30 ◽  
pp. 096368972097873
Author(s):  
Jing Li ◽  
Youming Zhu ◽  
Na Li ◽  
Tao Wu ◽  
Xianyu Zheng ◽  
...  

The lack of vasculogenesis often hampers the survivability and integration of newly engineered tissue grafts within the host. Autologous endothelial cells (ECs) are an ideal cell source for neovascularization, but they are limited by their scarcity, lack of proliferative capacity, and donor site morbidity upon isolation. The objective of this study was to determine whether differentiation of human dental pulp stem cells (DPSCs) into the endothelial lineage can be enhanced by recombinant ETV2 overexpression. DPSCs were extracted from fresh dental pulp tissues. ETV2 overexpression in DPSCs was achieved by lentiviral infection and cellular morphological changes were evaluated. The mRNA and protein expression levels of endothelial-specific markers were assessed through quantitative real-time polymerase chain reaction, western blot, immunofluorescence staining, and flow cytometry. The tube formation assay and Matrigel plug assay were also performed to evaluate the angiogenic potential of the ETV2-transduced cells in vitro and in vivo, respectively. Additionally, proteomic analysis was performed to analyze global changes in protein expression following ETV2 overexpression. After lentiviral infection, ETV2-overexpressing DPSCs showed endothelial-like morphology. Compared with control DPSCs, significantly higher mRNA and protein expression levels of endothelial-specific genes, including CD31, VE-Cadherin, VEGFR1, and VEGFR2, were detected in ETV2-overexpressing DPSCs. Moreover, ETV2 overexpression enhanced capillary-like tube formation on Matrigel in vitro, as well as neovascularization in vivo. In addition, comparative proteomic profiling showed that ETV2 overexpression upregulated the expression of vascular endothelial growth factor (VEGF) receptors, which was indicative of increased VEGF signaling. Taken together, our results indicate that ETV2 overexpression significantly enhanced the endothelial differentiation of DPSCs. Thus, this study shows that DPSCs can be a promising candidate cell source for tissue engineering applications.


2021 ◽  
Vol 400 (2) ◽  
pp. 112466
Author(s):  
J.F. Huo ◽  
M.L. Zhang ◽  
X.X. Wang ◽  
D.H. Zou

2021 ◽  
Vol 22 (10) ◽  
pp. 5224
Author(s):  
Kenny Man ◽  
Liam Lawlor ◽  
Lin-Hua Jiang ◽  
Xuebin B. Yang

The use of human dental pulp stromal cells (hDPSCs) has gained increasing attention as an alternative stem cell source for bone tissue engineering. The modification of the cells’ epigenetics has been found to play an important role in regulating differentiation, with the inhibition of histone deacetylases 3 (HDAC3) being linked to increased osteogenic differentiation. This study aimed to induce epigenetic reprogramming using the HDAC2 and 3 selective inhibitor, MI192 to promote hDPSCs osteogenic capacity for bone regeneration. MI192 treatment caused a time–dose-dependent change in hDPSC morphology and reduction in viability. Additionally, MI192 successfully augmented hDPSC epigenetic functionality, which resulted in increased histone acetylation and cell cycle arrest at the G2/M phase. MI192 pre-treatment exhibited a dose-dependent effect on hDPSCs alkaline phosphatase activity. Quantitative PCR and In-Cell Western further demonstrated that MI192 pre-treatment significantly upregulated hDPSCs osteoblast-related gene and protein expression (alkaline phosphatase, bone morphogenic protein 2, type I collagen and osteocalcin) during osteogenic differentiation. Importantly, MI192 pre-treatment significantly increased hDPSCs extracellular matrix collagen production and mineralisation. As such, for the first time, our findings show that epigenetic reprogramming with the HDAC2 and 3 selective inhibitor MI192 accelerates the osteogenic differentiation of hDPSCs, demonstrating the considerable utility of this MSCs engineering approach for bone augmentation strategies.


2021 ◽  
Vol 29 ◽  
pp. S65-S66
Author(s):  
M.-F Hsueh ◽  
J.L. Huebner ◽  
C.A. Jacobs ◽  
C. Lattermann ◽  
K.P. Spindler ◽  
...  

Open Medicine ◽  
2020 ◽  
Vol 15 (1) ◽  
pp. 492-500
Author(s):  
Zhonghan He ◽  
Yayun Wang ◽  
Qin He ◽  
Manhua Chen

AbstractAbnormal proliferation and migration of vascular smooth muscle cells (VSMCs) are critical processes that are involved in atherosclerosis. The aim of this study was to explore the role of microRNA-491-5p (miR-491-5p) in the progression of atherosclerosis by regulating the growth and migration of VSMCs. In this study, we showed that the expression of miR-491-5p was downregulated in the atherosclerotic plaque tissues and plasma samples of the patients with atherosclerosis. The bioinformatic analysis and dual-luciferase reporter assay identified that matrix metallopeptidase-9 (MMP-9) was a target gene of miR-491-5p. The results showed a significant upregulation of MMP-9 in the atherosclerotic plaque tissues and plasma samples. Subsequently, the results also showed that downregulation of miR-491-5p significantly promoted the proliferation and migration of VSMCs and inhibited the apoptosis in VSMCs. Furthermore, we detected the effects of miR-491-5p mimic on the growth and migration of VSMCs, and the results illustrated that miR-491-5p mimic could inhibit the proliferation and migration of VSMCs and promote the apoptosis of VSMCs. Notably, MMP-9 plasmid could reverse all the effects of miR-491-5p mimic on VSMCs. Collectively, our study provides the first evidence that miR-491-5p inhibited the growth and migration of VSMCs by targeting MMP-9, which might provide new biomarkers and potential therapeutic targets for atherosclerosis treatment.


Sign in / Sign up

Export Citation Format

Share Document