scholarly journals Cool running: locomotor performance at low body temperature in mammals

2012 ◽  
Vol 8 (5) ◽  
pp. 868-870 ◽  
Author(s):  
A. Daniella Rojas ◽  
Gerhard Körtner ◽  
Fritz Geiser

Mammalian torpor saves enormous amounts of energy, but a widely assumed cost of torpor is immobility and therefore vulnerability to predators. Contrary to this assumption, some small marsupial mammals in the wild move while torpid at low body temperatures to basking sites, thereby minimizing energy expenditure during arousal. Hence, we quantified how mammalian locomotor performance is affected by body temperature. The three small marsupial species tested, known to use torpor and basking in the wild, could move while torpid at body temperatures as low as 14.8–17.9°C. Speed was a sigmoid function of body temperature, but body temperature effects on running speed were greater than those in an ectothermic lizard used for comparison. We provide the first quantitative data of movement at low body temperature in mammals, which have survival implications for wild heterothermic mammals, as directional movement at low body temperature permits both basking and predator avoidance.

2020 ◽  
Vol 2 (1) ◽  
Author(s):  
M D Whitford ◽  
G A Freymiller ◽  
T E Higham ◽  
R W Clark

Abstract The outcomes of predator–prey interactions between endotherms and ectotherms can be heavily influenced by environmental temperature, owing to the difference in how body temperature affects locomotor performance. However, as elastic energy storage mechanisms can allow ectotherms to maintain high levels of performance at cooler body temperatures, detailed analyses of kinematics are necessary to fully understand how changes in temperature might alter endotherm–ectotherm predator–prey interactions. Viperid snakes are widely distributed ectothermic mesopredators that interact with endotherms both as predator and prey. Although there are numerous studies on the kinematics of viper strikes, surprisingly few have analyzed how this rapid movement is affected by temperature. Here we studied the effects of temperature on the predatory strike performance of rattlesnakes (Crotalus spp.), abundant new world vipers, using both field and captive experimental contexts. We found that the effects of temperature on predatory strike performance are limited, with warmer snakes achieving slightly higher maximum strike acceleration, but similar maximum velocity. Our results suggest that, unlike defensive strikes to predators, rattlesnakes may not attempt to maximize strike speed when attacking prey, and thus the outcomes of predatory strikes may not be heavily influenced by changes in temperature.


2013 ◽  
Vol 59 (6) ◽  
pp. 718-724 ◽  
Author(s):  
Mei-Xian Wu ◽  
Ling-Jun Hu ◽  
Wei Dang ◽  
Hong-Liang Lu ◽  
Wei-Guo Du

Abstract The significant influence of thermal acclimation on physiological and behavioral performance has been documented in many ectothermic animals, but such studies are still limited in turtle species. We acclimated hatchling soft-shelled turtles Pelodiscus sinensis under three thermal conditions (10, 20 and 30°C) for 4 weeks, and then measured selected body temperature (Tsel), critical thermal minimum (CTMin) and maximum (CTMax), and locomotor performance at different body temperatures. Thermal acclimation significantly affected thermal preference and resistance of P. sinensis hatchlings. Hatchling turtles acclimated to 10°C selected relatively lower body temperatures and were less resistant to high temperatures than those acclimated to 20°C and 30°C. The turtles’ resistance to low temperatures increased with a decreasing acclimation temperature. The thermal resistance range (i.e. the difference between CTMax and CTMin, TRR) was widest in turtles acclimated to 20°C, and narrowest in those acclimated to 10°C. The locomotor performance of turtles was affected by both body temperature and acclimation temperature. Hatchling turtles acclimated to relatively higher temperatures swam faster than did those acclimated to lower temperatures. Accordingly, hatchling turtles acclimated to a particular temperature may not enhance the performance at that temperature. Instead, hatchlings acclimated to relatively warm temperatures have a better performance, supporting the “hotter is better” hypothesis.


1975 ◽  
Vol 53 (6) ◽  
pp. 679-685 ◽  
Author(s):  
J. B. Holter ◽  
W. E. Urban Jr. ◽  
H. H. Hayes ◽  
H. Silver ◽  
H. R. Skutt

Six adult white-tailed deer (Odocoileus virginianus borealis) were exposed to 165 periods of 12 consecutive hours of controlled constant ambient temperature in an indirect respiration calorimeter. Temperatures among periods varied from 38 to 0 (summer) or to −20C (fall, winter, spring). Traits measured were energy expenditure (metabolic rate), proportion of time spent standing, heart rate, and body temperature, the latter two using telemetry. The deer used body posture extensively as a means of maintaining body energy equilibrium. Energy expenditure was increased at low ambient temperature to combat cold and to maintain relatively constant body temperature. Changes in heart rate paralleled changes in energy expenditure. In a limited number of comparisons, slight wind chill was combatted through behavioral means with no effect on energy expenditure. The reaction of deer to varying ambient temperatures was not the same in all seasons of the year.


1991 ◽  
Vol 69 (7) ◽  
pp. 1842-1847 ◽  
Author(s):  
Gregory K. Snyder ◽  
Joseph R. Coelho ◽  
Dalan R. Jensen

In chicks the ability to regulate body temperature to adult levels develops during the first 2 weeks of life. We examined whether the ability of young chicks to regulate body temperature is increased by elevated levels of the thyroid hormone 3,3′5-triiodothyronine. By 13 days following hatch, body temperatures of chicks were not significantly different from those expected for adult birds. Furthermore, at an ambient temperature of 10 °C, 13-day-old control chicks were able to maintain body temperature, and elevated serum thyroid hormone levels did not increase rates of oxygen consumption or body temperature above control values. Six-day-old chicks had body temperatures that were significantly lower than those of the 13-day-old chicks and were not able to regulate body temperature when exposed to an ambient temperature of 10 °C. On the other hand, 6-day-old chicks with elevated serum thyroid hormone had significantly higher rates of oxygen consumption than 6-day-old control chicks, and were able to maintain constant body temperatures during cold exposure. The increased oxygen consumption rates and improved ability to regulate body temperature during cold exposure were correlated with increased citrate synthase activity in skeletal muscle. Our results support the argument that thyroid hormones play an important role in the development of thermoregulatory ability in neonate birds by stimulating enzyme activities associated with aerobic metabolism.


2021 ◽  
Vol 5 (3) ◽  
pp. 543-549
Author(s):  
Helmy Yudhistira Putra ◽  
Utomo Budiyanto

During the COVID-19 pandemic, the price of preventive equipment such as masks and hand sanitizers has increased significantly. Likewise, thermometers are experiencing an increase and scarcity, this tool is also sought after by many companies for screening employees and guests before entering the building to detect body temperatures that are suspected of being positive for COVID-19. The use of a thermometer operated by humans is very risky because dealing directly with people who could be ODP (People Under Monitoring/Suscpected ) or even positive for COVID-19, therefore we need tools for automatic body temperature screening and do not involve humans for the examination. This research uses the MLX-90614 body temperature sensor equipped with an ultrasonic support sensor to detect movement and measure the distance between the forehead and the temperature sensor so that the body heat measurement works optimally, and a 16x2 LCD to display the temperature measurement results. If the measured body temperature is more than 37.5 ° C degrees Celsius then the buzzer will turn on and the selenoid door lock will not open and will send a notification to the Telegram messaging application. The final result obtained is the formation of a prototype device for measuring body temperature automatically without the need to involve humans in measuring body temperature to control people who want to enter the building so as to reduce the risk of COVID-19 transmission


Author(s):  
Ting-Min Hsieh ◽  
Pao-Jen Kuo ◽  
Shiun-Yuan Hsu ◽  
Peng-Chen Chien ◽  
Hsiao-Yun Hsieh ◽  
...  

This study aimed to assess whether hypothermia is an independent predictor of mortality in trauma patients in the condition of defining hypothermia as body temperatures of <36 °C. Data of all hospitalized adult trauma patients recorded in the Trauma Registry System at a level I trauma center between 1 January 2009 and 12 December 2015 were retrospectively reviewed. A multivariate logistic regression analysis was performed in order to identify factors related to mortality. In addition, hypothermia and normothermia were defined as temperatures <36 °C and from 36 °C to 38 °C, respectively. Propensity score-matched study groups of hypothermia and normothermia patients in a 1:1 ratio were grouped for mortality assessment after adjusting for potential confounders such as age, sex, preexisting comorbidities, and injury severity score (ISS). Of 23,705 enrolled patients, a total of 401 hypothermic patients and 13,368 normothermic patients were included in this study. Only 3.0% of patients had hypothermia upon arrival at the emergency department (ED). Compared to normothermic patients, hypothermic patients had a significantly higher rate of abbreviated injury scale (AIS) scores of ≥3 in the head/neck, thorax, and abdomen and higher ISS. The mortality rate in hypothermic patients was significantly higher than that in normothermic patients (13.5% vs. 2.3%, odds ratio (OR): 6.6, 95% confidence interval (CI): 4.86–9.01, p < 0.001). Of the 399 well-balanced propensity score-matched pairs, there was no significant difference in mortality (13.0% vs. 9.3%, OR: 1.5, 95% CI: 0.94–2.29, p = 0.115). However, multivariate logistic regression analysis revealed that patients with low body temperature were significantly associated with the mortality outcome. This study revealed that low body temperature is associated with the mortality outcome in the multivariate logistic regression analysis but not in the propensity score matching (PSM) model that compared patients with hypothermia defined as body temperatures of <36 °C to those who had normothermia. These contradicting observations indicated the limitation of the traditional definition of body temperature for the diagnosis of hypothermia. Prospective randomized control trials are needed to determine the relationship between hypothermia following trauma and the clinical outcome.


2015 ◽  
Vol 36 (6Supl2) ◽  
pp. 4575
Author(s):  
Julyana Machado da Silva Martins ◽  
Evandro De Abreu Fernandes ◽  
João Paulo Rodrigues Bueno ◽  
Carolina Magalhães Caires Carvalho ◽  
Fernanda Heloisa Litz ◽  
...  

<p>The objective of this study was to evaluate the effect of different nutritional plans on the body temperature and organ biometrics in male and female broilers, of two ages. Here, 1,700 birds were used (850 males and 850 females) in a completely randomized design composed of five treatments (- 3%, - 1.5%, reference, + 1.5% and + 3%), with 10 repetitions, totaling 50 experimental units; the reference treatment based on nutritional and energy levels indicated in previous studies was calculated from this. At 35 and 42 d, the temperatures of the wing, head, shin, back, and cloaca in males and females were measured separately, and the average surface and body temperature were calculated. At 42 d, relative weights of the gizzard, liver, heart, and small intestine were calculated. The temperatures of the wings, back, and cloaca, and consequently the average surface temperature and body temperatures, were not affected by nutritional plans. Effects of increasing the nutritional and energy levels were observed on liver weights, the gizzard, and the small intestine. We conclude that the nutritional plans did not affect body temperature. Males had higher body temperatures than females. Body temperature increased with increase in age, and the increase in the nutritional plans increased liver weight and reduced the gizzard weights.</p>


2021 ◽  
Author(s):  
◽  
Ilse Corkery

<p>Some of the key relationships in the life of an organism are interactions with individuals of other species within the community, for example, negative interactions such as predation and competition are well known to shape natural communities. Positive interactions also have well documented influences, such as intertidal seaweed canopies extending the distribution of many organisms to higher tidal heights, by reducing thermal and desiccation stresses. However, investigating interactions and measuring their significance for fitness is notoriously difficult. For example, several groups of fish are known to ‘clean’ other fish species by feeding on their ectoparasites, a mutually beneficial arrangement. However, foraging by cleaners can damage scales of their hosts and this interaction can become parasitic in times of low ectoparasite abundance. Using both field and laboratory data, I investigated factors that influenced the dynamics of an unusual vertebrate association, the cohabitation of tuatara and fairy prions in a burrow. The end goal was to contribute to the understanding of the classification of this association. The fairy prion is a seabird that comes to land only for the breeding season and the tuatara is a burrowing reptile, active primarily at night in a temperate climate. Specifically, I measured the effects that this association had on tuatara thermoregulation, and demonstrated the difficulty in applying that information to categorize a complex interaction. Investigations into the temporal and spatial habitat of the tuatara, and the degree to which this influenced thermal opportunities, revealed that mean tuatara body temperatures were always within mean environmental temperatures. Males and females did not differ in mean body temperature or effectiveness of thermoregulation. Body size did not predict body temperature or cooling rates, but heating rates were influenced, with larger animals heating faster than smaller individuals. The presence of a fairy prion in a burrow increased humidity within the burrow, and tuatara that occupied burrows containing a fairy prion were able to maintain up to 1.8°C higher body temperatures through the night during the austral summer months. Thus, burrow use behaviour and burrow selection had greater influences on tuatara body temperature than an individual’s sex or size. Experimental evidence revealed that tuatara are capable of adjusting their habitat selection behaviour in response to different humidity constraints. More time was spent outside the burrows and tuatara were more active under humid laboratory conditions. Use of the burrow by tuatara almost halved the time that fairy prions spent at the burrow with their chick, indicating that tuatara were having a negative effect on fairy prions’ use of their burrow. There was no evidence to support the fact that fairy prions were gaining any fitness benefits from their association with tuatara. Thus, we cannot call this interaction a commensalism or a mutualism. In certain instances, it may be that this interaction is best classed as a parasitism with the tuatara benefitting from burrow use and easy predation opportunities, to the detriment of the lifetime reproductive success of the fairy prion. In other instances it may simply be a case of competition for a limited resource (a burrow) with the outcome varying depending on the individuals and the circumstances involved. Being able to categorize interactions between species of high conservation value or at least to have an understanding of the costs and benefits associated with the interaction is desirable for conservation purposes, as failure to consider the ecological network within which a threatened species is embedded, may lead to counterproductive management measures. Further, these results can be used to develop future research into how climatic changes in temperature and rainfall may interact with habitat availability to influence the full range of natural outcomes of the tuatara-fairy prion association.</p>


1962 ◽  
Vol 15 (2) ◽  
pp. 386 ◽  
Author(s):  
PR Morrison

Body temperature measurements on the short-nosed bandicoot (Thylacis obeaulus) have shown a nocturnal cycle with a range of 1� 2�C and a short active phase at 2200-0400 hr. The bilby or rabbit bandicoot (Macrotis lagoti8) had a sharply defined temperature cycle, with a range of almost 3�C after several months of captivity, during which the day-time resting temperature was progressively lowered from 36� 4 to 34� 2�C. Forced activity raised the diurnal temperature substantially but not to the nocturnal level. Forced activity did not raise the nocturnal level which was similar in the two species (37' O�C). Both species could regulate effectively at an ambient temperature of 5�C, but only Thylaci8 showed regulation at ambient temperatures of between 30 and 40�C.


2018 ◽  
Vol 373 (1741) ◽  
pp. 20160449 ◽  
Author(s):  
Mats Olsson ◽  
Erik Wapstra ◽  
Christopher Friesen

We review the evolutionary ecology and genetics of telomeres in taxa that cannot elevate their body temperature to a preferred level through metabolism but do so by basking or seeking out a warm environment. This group of organisms contains all living things on earth, apart from birds and mammals. One reason for our interest in this synthetic group is the argument that high, stable body temperature increases the risk of malignant tumours if long, telomerase-restored telomeres make cells ‘live forever’. If this holds true, ectotherms should have significantly lower cancer frequencies. We discuss to what degree there is support for this ‘anti-cancer’ hypothesis in the current literature. Importantly, we suggest that ectothermic taxa, with variation in somatic telomerase expression across tissue and taxa, may hold the key to understanding ongoing selection and evolution of telomerase dynamics in the wild. We further review endotherm-specific effects of growth on telomeres, effects of autotomy (‘tail dropping’) on telomere attrition, and costs of maintaining sexual displays measured in telomere attrition. Finally, we cover plant ectotherm telomeres and life histories in a separate ‘mini review’. This article is part of the theme issue ‘Understanding diversity in telomere dynamics'.


Sign in / Sign up

Export Citation Format

Share Document